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1. INTRODUCTION

The funds received from the DURIP proposal were to be used to purchase a Polytec scanning
vibrometer. The vibrometer isAbeing used to make precise measurements of the mistuned modes and
natural frequencies of integrally bladed disks (IBRs) in the Mistuning System Identification Laboratory.
The resulting data is then used as input to system identification software that is being developed at CMU
under a separate Air Force contract. The system identification software then determines the mistuning in
each blade. This report documents the development of the vibration laboratory, the types of

measurements that are being done, and the research that has been made possible through its use.

2. EQUIPMENT PURCHASED AND LABORATORY ESTABLISHED

2.1 The Polytec Vibrometer

The Polytec scanning vibrometer was purchased in 2002. The equipment is shown in Figure 1.

Figure 1 Polytec Scanning Vibrometer

Some of the important features of the vibrometer are:

* The Measurements Can Be Automated
~  Built-in Function Generator drives Excitation Speaker
~ Automatically Repeats Excitation and Scans IBR for Modal Measurements (several

hundred transfer functions may be required per IBR). |

— More Precise Positioning of Measurements

» Data Validation Ensures High Quality Measurements
— Automatically Retakes Data if Signal is Not Optimal

¢« 12,800 FFT Lines
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— High Resolution Measurements Needed Because of High Modal Density (e.g.may have
50 modes between 1300 —1350 Hz) '

It was important to be able to automate the measurements because we could set up the test and let
the experiment run overnight. Alternatively, they would have taken weeks, if not months, to run the
same experiment if we had used our previous equipment.

Another advantage of the Polytec vibrometer is its high frequency resolution, i.e. 12,800 FFT lines.
Bladed disks often have frequencies that are very close together and .a high frequency ‘fesqlution
capability is required to determine their frequency response. An example of a representative frequency
response plot for an IBR is shown in Figure 2. Note that about ten modes are located within a ten Hertz
frequency band. Consequently, the very fine frequency resolution capability of the Polytec vibrometer

was needed to make these measurements.
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Figure 2 Frequency Response of an IBR

A list of the equipment purchased with DURIP funds is given in Attachment 1.

2.2 Additional Laboratory Components

In order to establish the System Identification Laboratory 'we have developed and puréhased
additional equipment from other funding sources. The experiments are performed on a vibration table
with base isolation, Figure 3 (a). We have a signal generation system' and amplification system that can
either excite the blades acoustically or magnetically, see Figure 3 (b) and Figure 4. The excitation
signals can be phased from blade to blade so as form a traveling wave excitation that simulates

excitations found in the engine, i.e. in the lab the excitation source rotates relative to the IBR whereas in
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the engine the IBR rotates relative to the excitation source. In addition, the excitations can simulate
transients and pulse éxcitations. As aresult, we can:
e Run automated modal tests
* Identify the mistuning in the system model the system and predict the response to a
traveling wave (engine order) excitation

¢ Verify the accuracy of the predictions with a traveling wave experiment.

This capability is used extensively in the paper by Rossi et al. given in the attachment.

L R

(a) Vibration Isolation Table & Vibrometer System (b) Excitation Control System
Figure 3 Mistuning System Identification Laboratory Equipment
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3. RESULTING RESEARCH

We have used the Mistuning System Identification Laboratory exténsively in our research at

Carnegie Mellon University. It has contributed to the research discussed in the following papers.

1. Feiner, D.M. and Griffin, J.H., 2004, “Mistuning Identification of Bladed Disks Using a
Fundamental Mistuning Model — Part I: Theory and Part II: Application”, ASME Journal of
Turbomachinery, Vol. 126, pp. 150 — 158 and 159-165.

2. D.M. Feiner, J.H. Griffin, K.W. Jones, J.A. Kenyon, O. Mehmed and A.P. Kurkov, 2003,
“System Identification of Mistuned Bladed Disks from Traveling Wave Response
Measurements,” Proceedings of the 2003 ASME ‘Design Engineering Technical Conference,
Chicago, IL, ASME Paper DETC 2003/VIB-48448.

3. -Ayers J.P., Feiner DM, and Griffin, JH., 2004, “A Reduced Order Model For Transient
Analysis Of Bladed Disk Forced Response,” 9th National Turbine Engine High Cycle Fatigue
(HCF) Conference, Pinehurst ,NC.

4. Rossi, MR, Feiner, D.M,, and Griffin, J.H., 2004, “Experimental Study Of The Fundamental
Mistuning Model For Probabilistic Analysis,” 9th National Turbine Engine High Cycle Fatigue
(HCF) Conference, Pinehurst ,NC.

Copies of these papers are provided in Attachment 2.
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ATTACHMENT 1

EQUIPMENT PURCHASED USING DURIP FUNDS

PAGE - 6 -




TO: REF: PO# 127603
HAMERSCHLAG HALL C124

PITTSBURGH, PA 15213 fnvoice No: /{ N
e Shipping Date: “1 »454’ .
BILL CARNEGIE MELLON UNIVERSITY Order Number: 105691
10. ATTN : ACCOUNTS PAYARLE ' , Cust. PO# Date: 5/31/02
5000 FORBES AVENUE v Customer PO: 127803
PITTSBURGH, PA 15213- 3800 Ship Via: UPS GROUND
Invoice Terms: NET 30 DAYS
Customer No: CAQ218
Sales Rep: DEO

. ‘ ) ' : ORDER INFOBMATION:
CARNEGIE MELLON UNIVERSITY o e prive
sHiP - MECHANICAL ENGINEERING DEPT. Auburn, MA 01501

PH: (508) 832-3456
FX: (508) 832-0506

SUTE3-A\ |
TUSTIN, CA 02} gC\?
FX: (714) 85483\

QUANTITY| QUANTITY | QUARTITY | = “ MODEL '} "
- NUMBER

ORDERED,| ‘SHIPPED | - B/O -

[ ' PSV-300-H

| PSV-300-H-B
PSV~-300-H-S
PSV-Z-082
PSV-Z-061
PSV-Z-062
PSV-SOFTDESK
PSV-Z-0686
PSV-Z-070-H
PSV-Z-081
PSV-108
OFV-056-CF99
PSV-Z-035
PSV-Z-018
PSV-TTT-1
PSV-300-8M12
PSV-EW-300-H
OMB-PSV-4
PSV-Z-061-D
OFV-CL-80
OFV-CL~150
OMB-LUZ

Hr4hw4kaklHrdk*wfapiw+4kawraFAHrAFAH
QOO0 Q0 OV0000 000 0VODO0D

o

PSV-300 HARDWARE CONSIST OF:

VIBRASCAN LASER VIBROMETE v

PSV-300 HARDWARE ID-31860
PSV-300 SOFTIWARE ID-31881
VIS.BASIC ENGINE ID-32548
UFF SOFTWARE ID-31057
PROF.GRID LAYCUT ID-31818

DESKTOP VERSION ID-32609 Sﬁﬁﬂ@

HIGH RES. SCAN ID-310%58
ZOOM FFT SOFTWRE ID-32142
HIGH RES. FFT  ID-32122] ,
HD TRIPOD W/MOTR.PAN/TILT Y
CLOSE-UP MODULE ID-32205 "/
CART FOR PSV-300 ID-30639
VERT. TEST STAND ID-32338

1 DAY TRAINING/INSTALLATI

12 MTH.SFT.MAINT.ID-31991
1-YR EXT.HARDWARE WARRANT
SET OF FOUR CASES v~

DSKTOP VER.W/UFF ID-32606”
80MM CLOSEUP LNS ID-31551
SM. PART LENS - ID-32226
RING LIGHT ILLUMINATOR

OFV-3001-8H6 VIBROMETER CONTROLLER SN:5021175
OFV-056 SCANNING HEAD SN:6020966
OFV-056-CF388 CLOSE-UP UNIT SN:60120380008

PSV-PC-H COMPUTER CONSOLE SN:

5021121

PSV-Z-040-H JUNCTION BOX SN:50207500004
PSV-Z-051 REMOTE FOCUS HANDSET SN: 50151800045

‘ OFV—SOSo SENaOR FEAD SN 8020922 _ _




ORDER INFORMATION:

REMIT PAYMENT TO:
1342 BELL AVE.
SUITE 3-A

TUSTIN, CA 92780
PH: (714) 850-1835
FX: (714) 850-1831

CARNEGIE MELLON UNIVERSITY 28 Midstate Drive
sHP MECHANICAL ENGINEERING DEPT. Auburn, MA 01501
TO: REF: PO# 12786803 PH: (508) 832-3456
HAMERSCHLAG HALL C124 FX: (508) 832-0506
PITTSBURGH, PA 15213 Anvoice No:
Shipping Date:
BILL CARNEGIE MELLON UNIVERIITY Order Number:
7o, ATTN : ACCOUNTS PAYABLE Cust. PO# Date:
5000 FORBES AVENUE : Customer PO:
PITTSBURGH, PA 15213-38%0 Ship Via:
Invoice Terms:
Customer No:
Sales Rep:

iz
105681
5/31/02
127803
UPS GROUND
NET 30 DAYS
CAQZ18
DEO

QUANTITY QUAN%HY'QUANTWY'*]'Q !
ORDERED |, SHIPPED |’ BIO- 7 | **. NUW

PRICE

UNIT .

OMB-LUZ FIBER- OPTIC RING LIGH SN:128534
PSV-Z-035 PSV MOBILE CABINET SN;N/A

VIEWSONIC VG150 COMPUTER MINITOR SN:GQ14851865
CHERRY DS1275 COMPUTER KEYBOARD SN:G026432
MICROSOFT INTELLIMOUSE COMPUTER MOUSE SN:5354164
PSV-300-H PSV-300 HARDLOCK SN: RUS-00000Z18
PSV-DESKTOP DESKTOP HARDLOCK SN:RUS-0000021A
PT570-24P MOTORIZED PAN/TILT HEAD SN:01036-14-0012
PSV-108 HEAVY DUTY TRIPOD SN:132X/MB28
PSV-Z-017 PAN /TILT HEAD INTERFACE PLATE SN:N/A
PSV-Z-020-A TRIPOD ADAPTER PLATE SN:N/A
PSV-Z~018 VERTICAL TEST STAND SN:80209480002
PSV-Z-018(CONT D) CONTROL UNIT SN:3255312
OMB-PSV-4 SET OF 4 PSV CASES SN:N/A

v'_Commeht:' SRS S P S
GARY HAYDEN 412-268-6248 / 382-1724




COMMENT ON COSTS

There were two complications that initially affected the cost of the vibrometer.

1. We received several different invoices from the manufacturer of the P olytec vibrometer.
Initially, they included charges for shipping that were not consistent with- their original
quote and that caused the cost to exceed the funds ' provided by the DURIP graht.
Eventually, we worked out the problem so that the actual cost matched their quote.

2. CMU normally charges overhead on maintenance contracts and the purchase of the Polytec
vibrometer included $8,285 for a maintenance contract. The overhead charge was $4,143.
The cost of the CMU overhead was not included in the DURIP proposal and this would
have cause a cost over run. However, it was pointed out to the CMU finance person that the
cost of the maintenance contract was included in the original proposal and that CMU had
signed off on the budget without an o verhead charge. A sa result, CMU agreedto cost

sharing the indirect (overhead) costs.

A copy of the “Project Detail Report” for January 2004 is provided on the next page and documents
that the total cost was equal to the grant amount of $213,630.
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Mistuning‘Identification of-BIaded'

Disks Using a Fundamental

D. M. Feiner
J. H. Griffin

Department of Mechanical Engineering,
Carnegie Mellon University,

5000 Forbes Avenue,

Pittsburgh, PA 15213

Mistuning Model—Part I: Theory

This paper is the first in a two-part study of identifying mistuning in bladed disks. It
develops a new method of mistuning identification based on measurements of the vibra-
tory response of the system as a whole. As a system-based method, this approach is
particularly suited to integrally bladed rotors, whose blades cannot be removed for indi-
vidual measurements. The method is based on a recently developed reduced order model

of mistuning called the fundamental mistuning model (FMM) and is applicable to isolated
families of modes. Two versions of FMM system identification are presented: a basic
- version that requires some prior knowledge of the system’s properties, and a somewhat
"more complex version that determines the mistuning completely fram experimenial
data. [DOIL: 10.1115/1.1643913]

1 Imtroduction

Bladed disks used in turbine engines are nominally designed to
be cyclically symmetric. If this were the case, then all blades
would respond with the same amplitude when excited by a trav-
eling wave. However, in practice, the resonant amplitudes of the
blades are very senmsitive to small changes in their properties.
Therefore, the small variations that result from the manufacturing
" process and wear cause some blades to have a significantly higher
response and may cause them to fail from high cycle fatigue. This
phenomenon is referred to as the mistuning problem, and has been
studied extensively. Srinivasan provides a thorough review of this
topic in [1].

To address the mxstunmg problem researchers have developed
reduced-order models (ROMs) of the bladed disk. These ROMs
have the structural fidelity of a finite element model of the full
rotor, while incurring computational costs that are comparable to
that of a_mass-spring model, [2-5]. In numerical simulations,
most published ROMs have correlated extremely well with nu-
merical benchmarks. However, some models have at times had

difficulty comrelating with experimental data, [6]. These results

suggest that the source of the error may lie in our inability to
determine the correct input parameters to the ROMs.

The standard method of measuring mistuning in rotors with
attachable blades is to mount each blade in a broach block and
measure its natural frequency. The difference of each blade’s natu-
ral frequency from the mean value is then taken as a measure of
the mistuning. However, the mistuning measured through this
method may be significantly different from the mistuning present
once the blades are mounted on the disk. This variation in mis-
tuning can arise because each blade’s frequency is dependent on
the contact conditions at the attachment. Not only may the blade-
broach contact differ from the blade-disk contact, but the contact
.conditions can also vary from slot-to-slot around the wheel.
Therefore, in order to accurately measure mistuning, we must de-
velop methods that can make measurements of the blade-disk as-
sembly as'a whole. '

Such holistic measurement techniques are particularly impor-
tant for integrally bladed rotors, since their blades cannot be re-
moved for individual measurement. In this paper, we present a
new method of identifying mistuning in bladed disks that is based

on the vibration characteristics of the whole system. The key con- -

Contributed by the International Gas Turbine Institute and presented at the Inter-
national Gas Turbine and Aeroengine Congress and Exhibition, Atlanta, GA, June
-~ 1619, 2003. Manuscript received by the IGTI Dec. 2002; final revision Mar. 2003.
Paper No. 2003-GT-38952. Review Chair: H. R. Simmons. ~

150 / Vol. 126, JANUARY 2004

Copyright © 2004 by ASME

cept is that system modes are highly sexsitive to small variations
in mistuning. Consequently, the modes themselves provide a sen-
sitive and accurate basis for identifying mistuning in the system.
Our method of system identification is based on a recently de-
veloped ‘reduced order model called the fundamental mistuning
model (FMM), [5], that accurately represents the vibratory re-
sponse of an isolated family of modes. FMM is a highly reduced-
order model that can completely describe a mistuned rotor using
only its tuned system frequencies and the frequency mistuning of
each blade/disk sector. As a result, when the FMM based identi-
fication method (FMM ID) is applicable, it is very easy to use and
requires very little analytical information about the system, e.g.,
no finite element mass or stiffness matrices. We have developed
two forms of FMM ID: a basic version of FMM ID that requires
some information about the system properties, and a somewhat
more advanced version that is completely éxperimentally based.
The basic FMM ID requires the frequencies of the tuned system®
as input. Then, given measurements of a limited number of mis-
tuned modes and frequencies,2 FMM ID solves for the mistuned
frequency of each sector. The advanced form of FMM ID uses
measurements of some mistuned modes and frequencies to deter-
mine all of the parameters in FMM,, i.e., the frequencies that the -
system would have if it were tuned as well as the mistuned fre-
quency .of each sector. Thus, the tuned system frequencies deter-

_mined from the second method can also be used to validate finite

element models of the nominal system.

Judge and Pierre have developed an approach for determining
mistuning in IBRs, [7], that also uses mistuned modes and fre-
quencies to infer the rotor’s mistuning. However, it is based on a
more complicated reduced-order model that results in a more
complex methodology, and requires -significantly more analyti-
cally generated input data to implement. However, it is not inher-
ently limited to an isolated family of modes as is FMM ID. Mi-
gnolet and Rivas-Guerra have also studied mistuning
identification, [8,9]. Their focus, however, was on discerning the
difference ‘between mass and stiffness mistuning in an isolated
blade.

This paper is Part I of a two part mvestlgatlon and develops the

!“The frequencies. of the tuned system are typically calcu]ated using a finite ele-
ment analysis of a single blade/disk sector with cyclic symmetric boundary condi-
tions applied to the disk. -

2The modes required in FMM ID are the circurferential modes that correspond to
the tip displacement of each blade around the wheel.
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theory of the FMM ID methiods, then confirms their applicability
with numerical test cases. The second paper, Part II, examines the
application of the methods to actual hardware.

This paper is organized as follows. Section 2 presents the basic
FMM ID theory, and provides numerical test cases of the method.
In Section 3, we present the completely experimental version of
FMM ID that also identifies the tuned system frequencies. Section
4 discusses an extrapolation method that allows mistuning
measured at rest to be used to predict the response of a rotor at
speed. Lastly, the key attributes of the method are summarized in

. Conclusions.

-2 Basic FMM ID

This section presents the basic FMM ID method. The basic
method uses tuned system frequencies along with measurements
of the mistuned rotor’s system modes and frequencies to infer
mistuning. '

. 21 Theory. The FMM ID method is derived from the fun-
damental mistuning model (FMM). The first part of this section
describes the FMM method. Then we invert the equations to ob-

"tain a formulation that can be used for system identification,

2.1.1 FMM Method. FMM is a highly simplified reduced-
order model that can accurately predict the vibratory response of
realistic bladed disks in an isolated family of modes, [5]. FMM
requires only two sets of input parameters to calculate the modes
and natural frequencies of the mistuned system: the tuned system
frequencies of one isolated family of modes, and the frequency
deviation of each blade-disk sector. In Appendix A, we derived a
more general form of the FMM modal equation than was given in
[5] that is applicable to systems with more flexible disks. The
more general modal equation is

(Q2+20°00) 8= w2B;. ' @®

The eigenvector of this equation, éj , contains weighting factors

that describe the jth mistuned mode as a sum of tuned modes, i.e.,
N-1

(ij:mzn Bjm ‘Z:n (2)

where' ¢,, is the mth tuned mode of the family of interest. The
corresponding eigenvalue, wjz, is the jth-mode’s natural frequency
squared. o

The matrix of the eigenvalue problem contains two terms, Q°
and 2. £’ is a diagonal matrix of the tuned system frequencies,
ordered by ascending inter-blade phase angle of their correspond-
ing mode. The notation 2°2 is shorthand for Q°7Q°, which results
in a diagonal matrix of the tuned system frequencies squared. The
matrix £ .contains the discrete Fourier transforms (DFT) of the
sector frequency deviations. € has the form

W Wy N~-1

—~ | By—y By - By,

Q= . . . ?3)
By @y e @g

where @, is the pth DFT of the sector frequency deviations. Note
that £ is a circulant matrix, in which each column is equal to the
previous column rotated down a row. Therefore, for an N bladed
disk, it has only N distinct values. '

One of the key changes in the generalized FMM is that it uses
anew quantity called a “sector frequency deviation” as a measure
of the mistuning for each blade-disk sector. In the original FMM
formulation, mistuning was measured by blade frequency devia-
tions. The advantage of the new mistuning measure is that it not
only accounts for mistuning in the blade, but also captures mis-

Journal of Turbomaéhinery

tuning in the disk as well as variations in the way the blades are
attached to the disk. The definition of a sector frequéncy deviation
is provided in Appendix A.

FMM treats the rotor’s mistuning as a known quantity that it
uses to determine the system’s mistuned modes and frequencies.
However, if we were to treat the mistuned modes and frequencies
as known, we-could solve the inverse problem to determine the
rotor’s mistuning. This is the basis of FMM ID.

2.1.2 Inversion of FMM Equation. This section manipulates
the FMM equation of motion to solve for the mistuning in the

. 1otor. Consider Eq. (1). All quantities are treated as known execept

Q, which describes the system’s mistuning. Subtracting the Q°2
term from both sides of (1) and regrouping terms yields

200000 B)]= (o2 1- QD) B;. @)

The bracketed quantity on the left-hand side of (4) contains a’
known vector, which will be denoted as ;,

7=QB;. _ 5)

Thus, 7; simply contains the modal weighting factors, B;, scaled
on an element-by-element basis by their corresponding natural
frequencies. Substituting ¥; into (4) yields - .
20707]=(JI-02) ;. ©
Consider the bracketed term of this expression. After some al- -
gebra, it can be shown that this product may be rewritten in the
form . :
05,=T;6 )

where the vector @ equals [@q,@; . .. @y—,]7. The matrix r;
is composed from the elements in y; and has the form

Yio Y Yin-1)
Yin Y2t Y
e o ®
Yiv-1 Yo Viw-2)

where 7;, denotes the nth element of the vector 17,~; the 17] ele-
ments are numbered from 0 to N-1. .

Substituting (7) into (6) produces an expression in which the
matrix of mistuning parameters, 2, has been replaced by a vector

of mistuning pérameters, @ '
20T;5=(1-Q%)3,. )

Observe that pre-multiplying (9) by (22°T))™* would solve this
expressign for the DFT of the rotor’s mistuning. Furthermore, the
vector @ can then be related to. the physical sector mistuning
through an inverse discrete Fourier transform. However, (9) only
contains data from one measured mode and frequency. Therefore,
error in the mode’s measurement may result in significant error in
the predicted mistuning.

To minimize the effects of measurement error, we will incotpo-
rate multiple mode measurements into our solution for the mis-
tuning. We construct (9) for each of the M measured modes, and
combine them into the single matrix expression,

20T, (1023,
20T | 5o (wil-;ﬂ RE 10)
20T, (-0,
For brevity, we rewrite (10) as )
La=7 an
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~-_,:1where Li is the matnx on the left hand sxde of the expressxon, and A
"7 is the vector on the right-hand side. The “~ 7 is used to indicate
- that these quantities are composed by’ vemcally staclcmg a set of

submatrices or vectors.
Note that express:on (11) is an over determined set of equa-

tions. Therefore, we can no longer solve for a) by direct inverse.

- However, we can obtain a least squares fit to the mistuning, i.e.,

w-—qu{L 7} R § )

Equatmn ( 12) produces the vector @ that best fits all the measured
data. Therefore, the error in each measurement is compensated for

by the balance of the data. The vector & can then be related to the

physxcal sector mistuning tbrough the inverse transform,

(J)_z e—:sp21r/N-' o (13)

where Aw(j) is the sector frequency deviation of the sth sector. -
~ The following section describes how Egs. (12) and (13) can be
applied to determine a rotor s mistuning.

© . 2.1.3 Experimental Apphcanon. In order to solve Eqs (12)

and (13) for the sector mistuning, we must first construct Land7
from the tuned system frequencies and the mistuned modes and
frequencies. The tuned system frequencies can be calculated

through ' finite element analysis of a tuned, cyclic symmetric,

single blade/disk sector model. However, the mistuned modes and
frequencies must be obtained experimentally.
The modes used by FMM ID are circumferential modes, corre-

sponding to the tip displacement of each blade on the rotor. Since.
- FMM ID is designed for isolated families of modes, it is sufficient
- . to measure the displacement of only one point per blade. In prac-

tice, modes and frequencies are obtained by first measuring a
complete set of frequency response functions (FRFs). Then, the

- .modes and frequencies are extracted from the FRFs using modal
* -curve fitting software.

The mistuned frequencies obtained from the measuréments ap-

. pear explicitly in the FMM ID equations as ;. However, the’
. mistuned modes enter into the equations indirectly through the

- modal welghtmg factors ﬁ; As described by Feiner and Griffin
- [5] each vector Bj is obtained by taking the inverse discrete Fou- -

rier transform of the corresponding single pomt—per—blade mode,
ie.,
N-1

These quantities may then be used with the tuned systém

frequencies to construct L and 7 as outlined in eaitier portions of
this section. Fma]ly, (12) and (13) may be solved for the sector
mistuning.

- This process is demonstrated through the two examples in the
followmg section.

2.2 Numerical Examples. Thxs secuon presents two nu-
merical examples of the basic FMM ID method. In the first ex-

ample, we consider an integrally bladed compressor whose blades

are geometrically mistuned. The sector frequency deviations iden-
tified by FMM ID are verified by comparing them with values
directly determined by finite element analyses. The second test

. case highlights FMM ID’s ability to detect mxstunmg caused by

vanatxons at the blade-disk interface.
2.2.] Geometric Blade Mistuning. Consider the finite ele-

ment mode] of the twenty ‘blade compressor. shown in Fig. 1.

Although the airfoils on this model are simply fiat plates, the rotor
design reflects the key dynamic behaviors of a modern, .integrally
bladed compressor. We mistuned the rotor through a combination
of geometric and material property changes. Approximately one-
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= 2 ’ ¢ e ~imn2aiN_ ‘ (14)

Fig. 1 Finite element model used to represent compressor .

third of the blades were mistuned through length variations, one-
third through thickness variations, and one-third through elastic
modulus variations. The magnitudes of the variations were chosen
so that each form of mistuning would contribute equally toals% -
standard deviation'in the sector frequencies.

We first performed a finite element analysis of the tuned rotor,
and generated its nodal diameter map, Fig. 2. Observe that the
lowest frequency family of first bending modes is isolated, and is
therefore a good candidate for FMM ID. The sector mistuning of
this rotor was then determined through two different methods:

finite element analyses of the mistuned sectors using the commer-

cially available ANSYS finite element code, and FMM ID.

The finite element calculations serve as a benchmark to assess
the accuracy of the FMM ID ruethod. In the benchmark, a finite
element model was made for each mistuned blade. In the model
the blade is attached to a single disk sector. The frequency change
in the mistuned blade/disk sector was then calculated with various
cyclic symmetric boundary conditions applied to the disk. It was
found that the phase angle of the cyclic symmetric constraint had
little effect on the frequency change caused by blade mistuning,
The values quoted in this paper are for a disk phase constraint of
90 deg, ie., for the five nodal dxameter mode
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Fig. 2 Natural frequencies of the compressor- with no
mistuning
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A finite element model of the full, mistuned bladed disk was
also constructed and used to compute its mistuned modes and
natural frequencies. The modes and frequencies were used as in-
- put data for FMM ID. In an actual experiment, the mistuned
modes and frequencies would be obtained through a modal fit of

the rotor’s frequency response functions. Typically, the meéasure- -

ments will not detéct modes that have a node point at the excita-
tion source. To reflect this phenomenon in our numerical test case,
we eliminated all mistuned modes that had a small response at
blade one. This left 16 modes and.natural frequencies to apply to
FMMID..
The mistuned modes and frequencies were combmed with the
tuned system frequencies of the fundamental mode family to con-
. struct the basic FMM ID equations, (10). These equations were
solved using a least-squares fit. The solution was then converted
to the phymcal sector frequency deviations through the. inverse
* transform given in (13).
Figure 3 shows the comparison between the sector mistuning
calculated directly by finite element simulations of each mistuned
" blade/sector and the mistuning identified by FMM ID The two
results are in good agreement.

2.2.2 Stagger Angle Mistuning. One of the key differences
between FMM ID and other mistuning identification methods is
- its measure of mistuning. FMM ID uses a frequency quantity that
characterizes the mistuning of an entire blade-disk sector. Other
methods in the literature consider mistuning to be confined to the
‘blades, [7]. The advantage of the sector frequency approach used

by FMM is.that it not only identifies the mistuning in the blades, -

but it also captures the mistuning in the disk and the blade-disk

interface. To lnghlxght this capability, the following example con-

- siders a rotor in which the blades are identical except they are

mounted on the disk with slightly different stagger angles. Figure

4 schematically illustrates a rotor with exaggerated stagger angle
variations as viewed from above.

Consider the compressor shown in Fig. 1. To mistune this rotor,

we randomly altered the stagger angle of each blade with a maxi-

\\\\\\

Flg ‘4 Hlustration of a rotor wlth exaggerated stagger angle
mistuning

* Journal of Turbomachinery

"O BasicFMMID ||,

Blade Tip Displacement

(Sect Freq Deviation) x 1000
O

S © 9.
A O o .

<
)

o

&
ho

e
=

10 15 20
Blade Number :
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mum variation of 4 deg. Otherwise the blades are identical. The

modes of the system were then calculated using the ANSYS finite
element code. F’gure § shows a representative mode. Observe
that the mode is localized, indicating that varying the stagger
angles does indeed mistune the system,

We then used the mistuned modes ‘and frequencies calculated
by ANSYS to perform an FMM ID analysis of the mistuning. The
resulting sector frequency deviations are plotted as the solid line
in Fig. 6. The squares correspond to the stagger angle variations
applied to each blade. The vertical axes have been scaled so that

* the maximum frequency and angle variation data points (blade 14)

are coincident. This was done to highlight the fact that the stagger

angle variations are proportional to the sector frequency devia- -

tions detected by FMM ID. Thus, not only can FMM ID accu-
rately detect mistuning in the blades, as illustrated in the previous

'example, but it can also accurately detect othier forms of mistun- - '

ing such as vanatlon in the blade stagger angle.

3 A Completely Expenmental Method of Identlﬁca-
- tion

The basic FMM ID method ‘presented in Section 2 prowdes an
effective means of détermining the mistuning in an IBR This’

1
ES

S Y]
Stagger Angle Variation (deg) )

',i’\/

O SectFreq Deviation
—— Anglé Variation

A
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- Blade Number

Fig. 6 Comparison of mistuning from FMM ID and the varia--

R

tions in the stagger angles
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o techmque reqmres a set of sunple wbratxon measurements and the'

*natural frequencies of the tuned system. However, at times neither
the tuned system frequencies nor a finitz element model from
which to obtain them are available ‘to researchers interested in
determining an IBR’s mistuning. Furthermore, even if a finite el-
ement model is available, there is often concern as to how accu-
rately the model fepresents the actual rotor. Therefore, we have

-developed an alternative FMM ID method that does not require
any analytical data. The approach requires only a limited number
of mistuned modes and frequency measurements to determine a
bladed disk’s mistuning. Furthermore, the method also identifies
the bladed disk’s tuned system frequencies. Thus, it not only
serves as a method of identifying mistuning the system, but can
also provide a method of corrobomhng the finite element model of

. the tuned system. : :

© 31 Theory. Thxs version of FMM ID is derived from the
‘basic FMM ID equations. Recall that an important step in the
development of the basic FMM ID theory was to transform the
" mistuning matrix £ into a vector form. Once we expressed the
_mistuning as a vector, it could then be calculated using standard
“methods from linear algebra. A similar approach is used in the
_current development to solve for the tuned system frequencies.
However, the resulting equations are nonlinear, and require a more

" sophisticated solution approach. .

'3.1.1 Development of Nonlinear Equations. Consider the ba-
sic FMM ID equation given in (9). Moving the 2 term ‘to the
. left-band side, the expression becomes

Q2B +20To=w2B;. . (15)

'We assume that from measurement of the mistuned modes and
frequencies, B; and w; are known. All other quantities are un-
known. Note that although I'; is ot known, the matrix contains
_elements from /31 Therefore, we do have some knowledge of the
inatrix.
After some algebra, one can show that. the term (¥’ 2,3 ; may be
_re-expressed as

' n"?/sj,:lxjx o 16)

where X" is a vector of the tuned frequencies squared, and B; is a
matrix composed from the elements of B;. I we define 7 to be
the maximum number of nodal diameters on the rotor, i.e., 7=N/2

if N is even or (N-1)/2 if N is odd, then )\ is given by
o3
o’
| | - an

o
2
@ ,ND

‘.

.For N even, the matrix B; has the form
1B - C ]
B

B

B=| ' . 8
B B, (18)

Bj2

L Bn B

A similar expression can be derived for N odd.
Substituting (16) into (15) and regrouping the left-hand side

results in a matrix equation for the tuned frequencies squared and
- the sector mlstumng,
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Equation (19) contains information from only one of the M
measured modes and frequencies. However, (19) can be con-

‘structed for ‘each measured mode and combmed into the single

matrix expression
B, m’r, Wi,
B, 20T, [ ]= wifs 0

.wMﬂM

Sy P4

By, 20T,

. Thus we have formed a single expression that incorporates all of

the measured data. For brevity, (20) is rewritten as

(B 2(?175)][()‘;,];—?' . e

where B is the stacked matrix of B;,. the term (’5.:’“1{‘) is'the ‘

stacked matrix of £° T;, and 7' is the right-hand side of (20).
To complete our formulauon we must introduce an additional
constraint equation. Itis required because the Egs. (21) are under-
determined. To understand the cause of this indeterminacy, con-
sider a rotor in which eéach sector is mistuned the same amount.
Due to. the symmetry. of the mistuning, the rotor’s mode shapes
will still look tuned, but its frequencies. will be shifted. If one has
no prior knowledge of the tuned system frequencies, there is no

‘'way to determine that the rotor has in fact been mistuned. The

same difficulty arises in solving (21) since there is no way to
distinguish between a mean shift in the mistuning and a corre-
sponding shift in the tuned system frequencies. To eliminate this
ambiguity, we will define mismning so that it has a mean value of
Zero.

Mathématxcally, a zero mean in the mistuning translates to pre- -

scribing the first element of @ @ to be zero. With the addition of this
constraint, (21) takes the form

'[B 2¢aD[N] [ |
[ « )H:H’] @
0 c w 0 :
where ¢ is a row vector whose first element is 1 and whose re-

maining elements are zero.
312 It Irerative Solution Method Consider Eq. (22). If the

term (Q"I‘) were known, then we could obtaini a least-squares’

solution for the tuned eigenvalues ) A and the DFT of the sector
mlstumng @. HoweVer since (Q°T) is based in part on the un-

known quantities x the equations are noulineat. Therefore, we

must use an altemauve solution method. This section describes

how these equations may be solved using an iterative approach.
In iterative form, the least squares solution to (22) can be wnt—

ten as .
{)}.] =qu{ [B 2(0‘1:)(1;—1)]’[ ;” ©@23)
@ ® 0 ' e 0

where the subscripts indicate the iteration number. For each itera-’

tion, we then construct a new matrix (2°T") based on the previous

iteration’s solution for x - This process is repeated until we obtain
a converged solution. With-a good initial guess, this method typi-
cally converges within a few iterations. Appendix B describes an
effective approach for obtaining a good initial guess.

3.2 Numerical Test Case. This section presents a numerical

example of the FMM ID method that identifies the tuned system

frequencies as well as the mistuning. This example uses the geo-
mietrically mistuned compressor model presented in Section 2.
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ﬁg. 7 Comparison of mistining from FMM ID. with FEM
benchmark o -

The tuned system frequenciés and sector mistuning identified by
FMM ID are then compared with finite element results. - '

"We calculated the modes and natural frequencies of the mis-
‘tuned bladed disk using a finite element model of the mistuned
system. We then COI_l;VEIT_éd the physical modes to vectors of modal
weighting factors, 8;, through (14). The weighting factors were
used to form the elements of Eq. (48) in Appendix B which was
solved to obtain an initial estimate of the tuned system frequen- -
cies. This was used as an initial guess to iteratively solve Eq. (23).
The solution vector contains two parts: a vector of the tuned sys-
* tem frequencies squared, and a vector of the DFT of the sector
* frequency deviations. The sector mistuning was converted to the
physical domain using the inverse transform (13).

The resulting ‘sector frequency deviations are compared with
the benchmark finite element values in Fig. 7 using the same
procedure as in Section 2.2." A comparison of the tuned frequen-
cies identified by FMM ID and those computed directly with the
finite element model is shown'in Fig. 8. In each case the agree-
ment is good.’ : .
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Fig. 8 Comparison of the tuned system frequenéies from FMM'
D and FEM : ,
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4 -Résiionse- Pfed.ict'ioi_i?#thpee’('l: o : v
" The FMM ID methods presénted in Sections 2 and 3 determine
the mistuning in bladed disks while they -are Stationary. However,

once the rotor is spinning, centrifugal forces can alter the effective
mistuning in the rotor. Section 4.1 presents a méthod for approxi-
mately calculating the effect of rotational speed on mistuning. -

" Then, in Section 4.2, we present a numerical example that applies
- this technique and then uses FMM to predict its forced response at

speed. The accuracy of the method is assessed by comparing the
results with a numerical benchmark. o

4.1 Mistuning Extrapolation. Centrifugal effects cause the
sector frequency deviations to change when the disk is rotating.
This section gives a simple method for approximating the effect of
rotational speed on mistuning. Details of the derivation: are pro-
vided by Feiner [10]. Here we summarize the result. . .

To investigate centrifugal stiffening in [10] the blade is mod-
eled as a pendulum, constrained to a rigid disk by a torsion spring.
While the disk is at rest, the blade’s frequency is perturbed (mis-
tuned). Then, the miodel is used to determine the corresponding -
change in the blade’s frequency when the disk is rotating, To first
order one finds that : ' S

. . . 0)? }
Aw(S)¥=~Aw(0)@ &”-’1(-)—] @4)

@onp(S)?

where S is the rotation speed of the disk, Aw($)® is the sector
mistuning ratio of the sth sector and w,yp(8) is the frequency of
a representative tuned system mode. For example, in the case
reported in 4.2, @, yp(S) is the frequency of the system mode-
with a 90 deg interblade phase angle. A key result from (24) is that -
mistuning is larger at rest than at speed, and that this reduction in
mistuning can be estimated by calculating how the tuned system
frequencies change with speed. It has been confirmed. that (24) *-
works reasonably well for realistic geometric mistuning in real
compressor blades, [10]. This will be also be demonstrated by the
next example. -

4.2 Numerical Test Case. This section uses a numerical
test case that shows how FMM ID, Eq. (24), and the FMM forced
response code can be combined to predict the response of a bladed
disk under rotating conditions. Consider the geometrically mis-
tuned rotor studied in Section 2.2.1, and illustrated in Fig. 1. This -
compressor has a-6th engine order crossing. with the first bending
modes -at a rotational speed of 20,000 rpm. However, to create a..
more severe test case, we will proceed as if the crossing occurred
at 40,000 rpm. . :

" In order to use FMM to predict the rotor’s forced response at -
this speed, we must provide the FMM prediction code, [S], with
the bladed disk’s tuned system frequencies and the sector fre-
quency deviations that are present at 40,000 rpm, In Section 2.2.1
we determined thiese two sets-of parameters at rest using ANSYS
and Basic FMM ID, respectively. However, since both of these
properties change with rotation speed, they must first be adjusted
to reflect their values at 40,000 rpm. o
- To adjust the tuned system frequencies, we recalculated them in
ANSYS using the centrifugal load option to simulate rotational
effects. The centrifugal stiffening-caused the tuned system fre-
quencies to increase by about 30%. Then we used the change in
the five nodal diameter, tuned system frequency and (24) to ana-
lytically extrapolate the sector frequency deviations to 40,000
rpm. In this case, the centrifugal loading reduces the mistuning
ratios by about 40%. . . .

Finally, the adjusted parameters were used with the FMM
forced response code to calculate the rotor’s response to a 6E
excitation using the method described inT5]. As a benchmark, the
forced response was also. calculated directly in ANSYS using a
full 360 deg mistuned finite element model. Tracking plots of the
FMM and ANSYS results are shown in Fig. 9. For clarity, we
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Fig. 9 Frequency response of blades to a six engine order
excitation

- have shown the.response of only three blades: the high responding

blade, the median responding blade, and the low responding
blade. Observe that each blade’s peak amplitude and the shape of
its overall response as predicted by FMM agree well with the
benchmark results. Thus, by combining FMM ID, the mistuning
extrapolation equation, and FMM, we were able to identify the
mistuning of a. rotor at rest, and use it to accurately predict the
system s forced response under rotating conditions.

5 Conclusxons
A new method of 1deut1fymg mlstumng in bladed dlsks is de-

‘veloped. This approach is called FMM ID because it is based on |
. the fundamental mistuning model (FMM). FMM and the methods

presented in this paper are applicable to isolated families of

" modes. Often the frequencies of the first bending and first torsion

families of modes satisfy this requirement. Identifying mistuning

in these modes is important not only for predicting forced re-
sponse, but also for predxctmg flutter.. Since mistuning tends to
stabilize flutter, the issue is how to relate a particular flutter test to
the fleet as a whole. We are pursumg the application of FMM ID
to the flutter problem in a Jomt research effort with Honeywell
research engineers. -

FMM ID uses measurements of the system mode shapes and
natural frequencies to infer the rotor’s mistuning. The key concept
behind FMM ID is that the high sensitivity of system modes to

.small variations in mistuning, causes measurements of those

modes themselves to be an accurate basis for mistuning identifi-
cation. Since FMM ID does not require individual blade measure-
ents, it is particularly suited to integrally bladed rotors. We have
developed two forms of FMM ID: Basic FMM ID and a version
that also idéntifies the frequencies of the tuned system.

Basic FMM ID uses tuned system frequencies from finite ele-
ment analysis and measurements of the mistuned system modes
and frequencies to determine a rotor’s mistuning. The mistuned
mode shape and frequencies can be measured with standard modal
analysis techniques.

Since Basic FMM ID is denved from FMM it requires very
Tittle analytical information. Specifically, it needs only the tuned
system frequencies of the mode family of interest. Thus, for an ¥
bladed disk, we only need approximately N/2 pieces of analytical
data. These frequencies can be obtained from finite element analy-
sis of a single-sector model using cyclic symmetric boundary con-
difions. The alternate form of FMM ID requires no analytical data.
1t relies solely on experimental measurements of the mistuned
modes and fréquencies. Thus, the second form of FMM ID can be
used to identify mistuning even if a finite element model of the

156 / ‘Vol. 126, JANUARY 2004 -

D bladed dnsk 1s not avallable Furthermore, thls approach not only
identifies the mistuning in a rotor, but it also infers its tuned sys- -
tem frequencies. Identifying the tuned system frequencies may be’
‘particularly -useful for assessing the validity of a finite element

model of the nominal system.

A number of numerical test cases are analyzed to demonstrate -

the applicability of the methods. One of these involve introducing
mistuning by varying the stagger angle of each blade in what was

.otherwise a perfectly tuned system. FMM ID accurately detects

the pattern of the stagger angle mistuning. This example is impor-

' tant because it illustrates the fact that mistuning in the bladed disk -
can be caused by sources that cannot be measured s1mply in terms .

of blade frequencies.
FMM ID can be used to identify the: mistuning in a bladed disk

when it is tested in the laboratory. A method has been demon-
strated for approximating how centrifugal loading will change the’

mistuning when it is rotating in the engine. Other factors may also
be present in the engine that can affect the mistuned response.
These may include: temperature effects, gas bending stresses, how

the disk is constrained in the engine, and how the teeth in the -

attachment change. their contact if the blades are conventionally
attached to the disk.. Except for the constraints on the disk, these
additional effects may be relatively unimportant in integrally
bladed compressor stages. The disk constraints can be taken into

account by performing the system ID on the IBR after the full*

rotor is assembled. Consequently, it seems feasible that the meth-

odology presented in this paper can be used to predict the vibra- .

tory response of actual compressor stages: U.S. Air Force engi-
neers have agreed to try this approach in forthcoming tests in the
Compressor ‘Research Facility (CRF) at Wright Patterson Air
Force Base in Dayton, Ohio. If the approach proves successful,
then the plan is to use the methodology to select which blades will
be instramented, interpret test data, and relate the v1bratory re-
sponse measured in the CRF to the vibration that will occur in the
fleet as a whole
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Appendix A

A More General Form of FMM. This appendix presents the

derivation of 2 more general form of the modal equation for the
fundamental mistuning model (FMM) that is applicable to rotors
with more flexible disks. The generalized FMM formuilation dif-

fers from the original in two ways. First, it no longer approxi-.

mates the tuned system frequencies by their average value. This
allows for a much larger variation among the tuned frequencies.
Second, rather than using the blade-alone mode as an approxima-
tion of the various nodal diameter sector modes, we now use a
representative mode of a single blide-disk sector. Consequently,

the approach now includes the disk portion of the mode shape,

and thus allows for more strain energy in the disk. :
The changes in the formulation also modify our measure of
mistuning. In the original FMM form, we measured mistuning as

" a percent deviation in the blade-alone frequency. However, mis-

tuning is now measured as a percent deviation the frequency of
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- blades are attached to the disk.

H e T éaqh::blade—'disk sector: .Tije.zidifaﬂta'ga}i‘s- that:the sector freqi;ency

~~deviations not:only capture mistuning in the blade, but can also

- capture mistuning in the disk as well as variations in the ways the

Section 1 of this appendix- describes how the SNM approach,

11, is used to reduce the order of the mistuned free-response equa-

- tions and formulates the problem in terms of reduced-order sector

matrices. Section 2 relates the sector matrices to mistuned sector

frequencies. Section 3 simplifies the resulting mathematical ex-
pressions, ’

I - Reduction of Order. Consider a mistuned, bladed disk in
the absence of an excitation. The order of its equation of motion is
reduced through a subset of nominal modes approach. The result-
ing reduced-order equation can be written as, 11:

[(Q7+AK) ~ w21+ AND]3,=0 (25)
02 is a diagonal matrix of the tuned system eigenvalues,? and I is

the identity matrix. AK and AM are the variations in the modal
stiffness and modal mass matrices caused by stiffness and mass

mistuning. The vector B; contains weighting factors that describe-
* the jth mistuned mode as a limited sum of tuped modes, i.e.,

¢='B, @6
where ®° is a matrix whose columns are a limited number of the
tuned system modes. . .

Note that to first order, (I+AM)™!~(I—~AM). Thus, by pre-
multiplying (25) by (I+ A'Ic'l)'1 and keeping only first-order
terms, the expression becomes

(@2 +A)3=0?B; @n
where _
A=AK-AMOQ?. (28)

Next, we will relate the matrix A to the frequency deviaﬁons of
the mistuned sectors.

2 Relating Mistuning to Sector Frequency Deviations. - Re-
lating A to frequency deviations is a three-step process. First, the
mistuning matrix is expressed-in terms of the system miode shapes

. of an individual sector. Then, the system sector modes are related

to the corresponding mode of ‘a single, isolated sector. Finally, the
resulting sector-mode terms in A are expressed in terms of the
frequency deviations of the sectors. : ‘

2.1 Relating migtuning to system sector modes. Co-nsider' the

mistuning matrix, A, in (28). This matrix can be expressed as a

. sum of the contributions from each mistuned sector:

N~1 _
A= A® ' ©9) .
. =0 .

where the superscript derotes that the mistuning corresponds to
the sth sector. The expression for a single element of A® s

ALI= G (ARS) — 2AM®) G2 (0)

where AK®? and AM® are the physical stiffness and mass per-
turbations of the sth sector. The modes ¢ and ¢ are the
portions of the mth and nth columns of ®° which describe the sth
sector’s motion. The term w;” is the nth diagonal element of Q2.

Equation (30) relates the mistuning to the system sector modes.
In the next section, these modes are related to the mode of a single
isolated blade-disk sector. '

3An eigenvalue is equal to the square of the natural frequency of a mode.
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2.2 Relating system-sector modes: to an average sector mode " -
The tuned modes in (30) are expressed in complex fraveling wave
form. Thus, the motion of the sth sector can be-related to the .
motion of the Oth sector by a phase shift. This allows us to restate -

(30) as .

A

Because the tuned modes used in the SNM formulation are an

isolated family of modes, the sector modes of all nodal diameters .
look nearly identical. Therefore, we can approximate the various

sector modes by an average sector mode. Applying the average
sector mode approximation for the system sector modes in (31),

A,(,f,), can be written as

A,(.f.). = ( f’_"'_‘_;’ﬁ) ei:(n-—m)Zw/N[_ 'Z°(°)”( AK®)— w;z AM(')) {,‘,«(0)]
© .
[

@

" where ¢°® is the average tuned system sector mode, and @ isits
natural frequency. In practice, ¢ can be taken to be the median

modal diaméter mode. The factor (w, @)/ (w}z) scales the aver-
age sector mode terms so that they have the approximately the
same strain energy as the sector modes they replace.

2.3 Introduction of sector frequeéncy deviation. ‘This version
of FMM uses the deviation in a sector frequency quantity to mea-
sure mistuning. To understand this concept, consider an imaginary
“test” rotor. In the test rotor every sector is mistuned in the same
fashion, so as to match the mistuning in our sector of interest.

‘Sirice our test rotor’s mistuning is cyclically symmetric, its mode

shapes are virtually identical to those of the tuned system. How-
ever, there will be a shift in the tuned system frequencies. For

small levels of mistuning, the frequency shift is nearly the same in’

all of the tuned system modes and can be approximated by the
fractional change i the frequency of the median nodal diameter
mode? Thus, the fractional shift in the median nodal diameter’s
frequency is taken as our measure of mistuning and is defined as
the sector frequency deviation.

The bracketed terms of (32) are related to these frequency: de- .

viations in the following manner. Consider a bladed disk that is
mistuned in a cyclic symmetric fashion, i.e., each sector under-

goes the same mistuning, Its free-response equation of motion is

given by the expression

[(K"+AK) — w2(M+AM)],=0. @33
Tike the mode ¢, to be the ‘mistuned version of the tuned -

median nodal diameter mode, ¢°. ¢ is the full system mode
counterpart of the average sector mode ¢™®. Since mistuning is
symmetric, the tuned and mistuned versions of the mode are

geariy identical. Substitating J" for ¢, and pre-multiplying by ‘

&7 yields

(g + ARG - 21+ F AME)=0. (34

These terms may be rearranged to isolate the frequency terms

PHOR-GAM =0l -0F. (35
Since the mistuning is symmetric, each sector contributes equally

to (35). Thus, the contribution from the Oth-sector is

- b 1 - 0 e .
FORAK~ a)iAM) (/,°(0)-_—N(wj2-—w¢2), . (39

By factoring the frequency terms on the right-hand side of (36), it
can be shown that .

“Yhis is the case for an isolated family of modes in which the strain energy is
primarily in the blades. If there is a significant amount of strain energy in the disk
then the frequency of the modes change significantly as a function of nodal diameter
and the modes are not isolated, i.e., they cover such a broad frequency range that
they interact with other families of modes.

JANUARY 2004, Vol. 126 / 157

A’("l")l = is(a—m)2aIN $;SO)H (A K&~ (0;2 AM(S)) q;;(o-) . (31) )



e _' 2a1°2Aco v
oo ,/,°(0)”(AK_ ‘l’iAM)‘/’o(o)v”JN—l , GD

where Aw ,, is the fractional change in #’s natural frequency due-

‘to mistuning, given by Aw,=(w,—w,)/w}. Note that by defi-
nition Aw,, is a sector frequency deviation. “éq

that sector’s frequency deviation

sy 2050, : ‘
Ag.:')l= 1’; n ei:(n—m)2ﬂlNAw$;)' (38)

* where the superscript on Ay, is introduced to indicate that the
' frequency deviation corresponds- to. the sth sector. These sector

contributions may be summed to obtain the elements of the mis-
tuning matrix Co :

. N-1 ' ] :
Iy . 1 s .
Am,,=2w‘,’,,w;l1—v— 2_0; e"("""',)z"mAw(,;)]. (39)

' .3 The Simplified Form of the Fundamental Mistuning Model
Modal Equation. The bracketed term in (39) is the discrete Fou-
rier transform (DFT) of the sector frequency deviations. If we use .
_the dummy variable p to replace the quantity (i —m) in (39), then

the pth DFT of the sector frequency deviations is given by
) N1 : :
 By=| =, P PNALS) . (0)
: Ni=v . ’ .

where @, denotes the piti DFT. By substituting @0) into (39), A

. may be expressed in the simplified matrix form’

A=20000° . @1

where

_ | @y-1 @ vt @y-zf -
Q=] . i A - (42)
‘Bl . (7)2 . fr)o

Q is a matrix which contains the discrete Fourier transforms of
the sector frequency deviations. Note that £ has a circulant form,
and thus contains only N distinct elements. £’ is a diagonal ma-
trix of the tuned system frequencies. ' : )
Substituting (41) into. (27) produces the most basic form of the

_‘eigenvalue problem that may be solved to determine the modes
-and natural frequencies of the mistuned system.

(Q2420°0Q°) 3=’ B; @)
Appelidix B . '
Estimating the Tuned Syétein Frequencies. This appendix

" presents an effective method of obtaining a good initial' guess of

the tuned system frequencies for use in the iterative solution pro-

“cess described in Section 3.1.2. The approach is to obtain the

initial guess by solving 2 companion problem.-

“To identify a good initial guess, recall that FMM ID requires . »

that we analyze an isolated family of modes. In general, the fre-
quencies of isolated mode families tend to span a fairly small
range. Therefore, they may be reasonably well approximated by
their mean value, i.e., ' :
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uation (37) can be
substituted for the bracketed terms of (32), resulting in an expres- -
‘sion that relates the elements of the sector s mistuning matrix to

. However, the value of co‘;,',g is not known and therefore cantot )

be directly applied to (23). Consequently, we will formulate a
slightly modified form of (22), which incorporates the initial guess

-defined by (44). Consider Eq. (22). If we take the tuned frequen-

cies to be equal to @, , then the term (Q°T) may be expressedas

@D=o, I - @)
where T is the matrix formed by vertically stacking the MT;

. matrices. . .

The matrix T; is also related to the tuned frequencies. As a

‘result, the elements of each matrix I; ‘simplify to the form

@ygBin - This allows us to rewrite I’; as

Ti=wul; o)
where Z; is composed of the elements B, arranged in the same
pattern as the 7;, elements shown in (8). Thus, consolidating all

@,y terms, (45) can be written as '
(@T)=02Z : @D
where Z is the-stacked form of the Z; matrices. '

Substituting (47) into (22) and regrouping terms results in the

expression

B 2‘2[ i"'_{? | A48.
0 &leZa) lof ._( ).

Note that the w2, term was grouped with the vector @. Thus, all
the unknown expressions are consolidated into the single vector.
on the left-hand side of (48). These guantities can be solved

- through a Jeast squares fit of the equations. This represents the Oth
jteration of the solution process. The \” terms of the solution may -

then be used as an-initial guess for the first iteration of (23).
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Mistuning Model—Part IL:
Application

This paper is the second in a two-part study of identifying mistuning in bladed disks. It
presents experimental validation of a new method of mistuning identification based on
measurements of the vibratory response of the system as a whole. As a system-based
method, this approach is ‘particularly suited to integrally bladed rotors, whose blades

cannot be removed for individual measurements. The method is based on a recently
developed reduced-order model of mistuning called the fundamental mistuning model
(FMM) and is applicable to isolated families. of modes. Two versions of FMM system
identification are applied to the experimental data: a- basic version .that requires some
prior knowledge of the system’s properties, and a somewhat more complex version that
determines the mistuning completely from experimental data. [DOIL 10.1115/1.1643914]

1 Introduction

This is the second of two papers on identifying mistuning in
bladed disks. The first paper [1] reviews the literature, derives a
new theory of identifying mistuning, and illustrates its applicabil-
ity using numerical examples. Since the method is based on mea-
surements of the system as a whole, it is particularly suited to
integraily bladed rotors (IBRs). Two versions of system identifi-
cation were derived in the first paper: a basic version that requires
some prior knowledge of the system’s properties, and a somewhat
more complex version that determines the mistuning completely
from experimental -data. The second method not only determines
the mistuning in the IBR but also determines the natural frequen-
cies that it would have had if all the blade and disk sectors were
identical, i.e., the “tuned” system frequencies. In this second pa-
per, we apply the new methods to a modern compressor stage,
identify the' mistuning and the tuned system frequencies, and show
that the results correlate well with the experimental data and also
with independent measurements and calculations made by engi-
neers at Pratt & Whitney Aircraft.

The literature in mistuning is extensive, [2], and the current
research is put in context in Part I, [1]. However, it should be
emphasized that Judge et al. introduced the concept of using the
system modes and frequencies to determine the mistuning in
IBRs, [3], and also did extensive comparisons with experimental
data. The key differences between their approach and that reported
here are: the relative simplicity of FMM ID and the consequence
that the mistuning in the system can be determined completely
from experimental data; that FMM ID uses a blade/disk sector
measure of mistuning; and the fact that their method is not inher-
ently limited to an isolated family of modes as is FMM ID.

The system identification methods presented here will be ap-
plied to two IBRs of ihe same design. The IBRs used in this study
were designed by Prof. S. Fleeter at Purdue University in coop-
eration with Pratt & Whitney Aircraft to reflect the aerodynamic
and structural properties of a modem compressor. The work: re-
ported in this paper is part of a major research initiative on mis-
tuning, friction damping, and forced response that is sponsored by
the U.S. Air Force, the U.S. Navy, NASA, and the industrial mem-

Contributed by the International Gas Turbine Institute and presented at the Inter-
national Gas Turbine and Aeroengine Congress and Exhibition, Atlanta, GA, June
1619, 2003. Manuscript received by the IGTI December 2002; final revision March
2003. Paper No. 2003-GT-38953. Review Chair: H. R. Simmons.
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bers of the GUIde Consortium. Consequently, the vibratory re- -
sponse of the compressor stages discussed in this paper will be the
focus of mistuning and forced response studies for some time to
come.

This paper is organized as follows. Section 2 describes the two
test rotors and the testing procedure. Then, in Section 3, we
present the FMM ID results. The determined values of mistuning
are used as input with the standard FMM prediction code, {4], to
predict the rotor’s vibratory response to a traveling wave excita-
tion and the results compared with expenmcntal data in Section 4
An interesting result from Section 3 is that the mistuning patterns
in both IBRs are very similar. The implications of this result are
discussed in Section 5. Finally, the key attributes of the method
are summarized in Conclusions.

2 Test Rotors and Procedures

2.1 Test Rotors. To investigate how well FMM ID works

with real experimental data from actual hardware, we applied the
methods in Part 1, [1], to a pair of transonic compressors, Fig. 1.
The two rotors are designated as SN-1 and SN-3.
. Our industrial partner on this project, Pratt & Whitney, pro-
vided a single blade/disk sector finite element model of the tuned
compressor. By solving this model with free boundary conditions
at the hub and various cyclic symmetric boundary conditions on
the radial boundaries of the disk, we generated a nodal diameter
map of the tuned rotor, Fig. 2. The free boundary conditions at the
hub represented the boundary conditions in our experiment: an
IBR supported by a soft foam pad and is otherwise unconstrained.
Note in the figure that each of the first two families of modes have
isolated frequencies. These correspond to first bending and first
torsion modes, respectively. Since FMM ID is applicable for iso-
lated families of modes, both the first bending and first torsion
modes are suitable candidates for our identification method.

2.2 Experimental Procedures. FMM ID requires measure-
ments of the mistuned rotor’s system modes and natural frequen-
cies. By system mode, we mean the tip displacement of each
blade as a function of angular position. These modes were ob-
tained using a standard modal analysis approach: measure the
bladed disk’s transfer functions, and then curve-fit the transfer
functions to obtain the modes and natural frequencies.

Our industrial partners performed standard transfer function
measurements. The rotor was placed on a foam pad'to approxi-
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Fig. 1 One of two nominally identical test compressors

mate a free boundary condition. Then, they excited one of the
blades over the frequency range of interest, measured the response
of each blade with a laser vibrometer, and determined the transfer
functions using a spectrum analyzer. A typical transfer function is
shown in Fig. 3. Note that due to the high modal density, it was
necessary to measure the response with a very high frequency
resolution. This process was repeated for both compressors over
two frequency bands in order to capture the response of both the
first bending and first torsion modes.

We then used the commercially available MODENT modal
analysis package to curve-fit the transfer functions. This resulted
in measurements of the mistuned first bending and torsion modes
of each rotor, along with their natural frequencies. Because the
blade that was excited was at a low response point in some modes,
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we were not able to measure two or three of the modes in each
family. In the following section, we use these measured mistuned
modes and natural frequencies to demonstrate the applicability of
FMM ID to actual hardware.

3 FMM ID Results

The measured modes and frequencies were used to test both
forms of the FMM ID method: Basic FMM ID and the completely
experimental Advanced FMM ID. The method was applied to
each rotor, for both the first bending and torsion families of
modes. The tuned frequencies required by basic FMM ID were the
same as those depicted in Fig. 2. :

In order to assess the accuracy of FMM ID, the results were -
compared to benchmark data. In Section 3.1, we discuss a method
for obtaining a benchmark measure of mistuning. Then, in Sec-
tions 3.2 and 3.3 we present the results of FMM ID for the first
bending and first torsion modes, respectively.

3.1 Benchmark Measure of Mistuning. In order to assess
the accuracy of the FMM ID method, the results must be com-
pared to benchmark data. However, since the test rotors are inte-
grally bladed, their mistuning could not be measured directly.
Therefore, an indirect approach was used to obtain the benchmark
mistuning. Our industrial partners carefully measured the geom-
etry of each blade on the two rotors. From the geometries, they
constructed finite element models for each blade and calculated
the frequencies. that it would have if it were clamped at its root.
Since each blade had a slightly different geometry it also had
slightly different frequencies. Thus, the variations in the blade
frequencies caused by geometric variations were determined. This
data was provided to CMU and we put it in a form that could be
compared with the values identified by FMM ID. First, we calcu-
lated the frequency variations as a fraction of the mean so that we
knew the deviation in the blade frequencies. These in turn had to
be related to the sector frequency deviations determined by FMM
ID. For modes with most of their strain energy in the blade, sector
frequency deviations can be obtained from blade frequency mis-
tuning by simple scaling, i.e.,

A&)wéa(Awb) , ¢))]

where a is the fraction of strain energy in the blade for the average
nodal diameter mode.

Section 3.2 presents the results. for the family of bending
modes, and Section 3.3 presents the results from the torsion
modes.

32 FMM ID Results for Bending Modes

3.2.1 SN-1 Results. The measured mistuned modes and
natural frequencies for the compressor SN-1 were used as input to
both versions of FMM ID, as described in [1]. In the case of basic
FMM ID, the tuned system frequencies of the first bending family
from Fig. 2 were also used as input. :

Figure 4 shows the sector frequency deviations Ldentxﬁed by
each FMM ID method along with the benchmark results. In both
cases, the agreement is good. This implies that the mistuning
is predominantly caused by geometric variations and that the
variations are, in fact, accurately captured by Pratt & Whitney’s
process.

In order to make these comparisons easier, we plotted all mis-
tuning in Fig. 4 as the variation from a zero mean. However, it
should be noted that this rotor had a mean frequency 1.3% higher
than that of the tuned finite element model. This DC shift was
detected by Basic FMM ID as a constant amount of mistuning
added to each blade’s frequency. However, since the Advanced .
FMM ID formulation does not incorporate the tuned finite ele
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ment frequencies, it has no way to distinguish between a mean
-shift in the mistuning and a corresponding shift in the tuned sys-
tem frequencies. Therefore, in Advanced FMM ID we define mis-
tuning to have a zero mean, and then infer a corresponding set of
tuned frequencies.

.. The tuned frequencies identified by Advanced FMM ID are
compared with the finite element values in Fig. 5. Notice that the
FMM ID frequencies are approximately 17 Hz higher than the

. finite element values. This corresponds to a 1.3% shift in the mean
of the tuned system frequencies that compensates for fact that the
blade mistuning now has a zero mean. To facilitate the compari-
‘son of the finite element and FMM ID results, we have subtracted
off the mean shift, and then plotted the results as circles on Fig. 5.
Once this. adjustment is made, it can be seen that the distribution
of the tuned frequencies determined by FMM ID agree quite well
with the values calculated from the finite element model. Clearly,
the finite element model captures the same variations in the tuned
system frequencies as identified by Advanced FMM ID. However,
advanced FMM ID identifies the fact that SN-1 had slightly higher
average frequencies than the FEM model—a fact that could be
important in establishing frequency margins for the stage.
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Fig. 5 Comparison of tuned system frequencies from FMM ID
and FEM for SN-1
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results for SN-1

Consider the sector frequency deviations of SN-1-shown in Fig.
4. Notice that the mistuning varies from blade-to-blade in a regu-
lar pattern. To highlight this pattern, we will reassign the blade
numbering so that blade position 1 corresponds to the high fre-
quency blade, Fig. 6. Notice that when plotted in the new num- .
benng scheme, the mxstumng pattern has a predominantly de-
creasing trend, with a jump at position 9. This trend suggests that
the mistuning might have been caused by tool wear during the
machining process and that an adjustment in the process was
made after half of the 18 blades were manufactured. This hypoth-
esis will be reexamined after reviewing the results for SN-3.

3.2.2 SN-3 Results. The Basic and Advanced FMM ID
methods were then applied in a similar manner to roter SN-3’s
family of first bending modes. The identified mistuning and. tuned
system frequencies-are shown in Figs. 7 and 8. For comparison
purposes, we have again plotted the mistuning with a zero mean,
and subtracted a corresponding mean shift from the predicted
tuned system frequencies. The ‘agreement is also good for rotor
SN-3.

In Fig. 7, we numbered the blades so that blade 1 corresponds
to the high frequency sector. Since we used a similar numbering
scheme in SN-1, we can more easily compare the mistuning in
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Fig. 7 Comparison of mistuning from FMM ID with benchmark
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both rotors. It is interesting to note that the mistuning pattern in
Fig. 7 for SN-3 is quite similar to that of Fig. 6 for SN-1. This
result proves that in IBRs mistuning is not always a random phe-
nomenon. The implication of this fact on the predictability of the
-vibratory response is discussed in Section 5.
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.33 FMM ID Results for Torsion Modes. In this section
we will examine FMM ID’s ability to identify mistuning in the
first torsion modes. ‘Only the results for Advanced FMM ID are
prescnted in order to conserve space.

Advanced FMM ID was applied to each test rotor’s family of
torsion modes. Figure 9 compares the mistuning identified by
FMM ID with the values inferred by our industrial partners from
their geometric measurements. The agreement between the two

-methods for SN-1 is quite good, while the agreement for SN-3 is

remarkable. In Fig. 9, the blades.are numbered in the same order
as in plots 6 and 7. Thus, the mistuning patterns in the torsion
modes are very similar to those observed for the bending modes,
e.g., the blades with the highest and lowest frequencies are the
same for both sets of modes. This suggests that the mistuning in
these systems may well be caused by relatively uniform thickness
variations in the blades since this would affect the frequencies of
both types of modes in a very similar manner.

In addition to identifying the mistuning in these rotors, Ad-
vanced FMM ID simultaneously inferred the tuned systém fre-
quencies of the systems torsion modes, as shown in Fig. 10.
Again, the agreement is good. Thus, FMM ID worked well on
both the torsion and bending modes of the test compressors.

4 Forced Response Prediction

In the previous section, we found that both forms of FMM ID
inferred mistuning that agreed very well with benchmark data. In
this section, the identified mistuning will be used to predict the
forced response of the compressors to a traveling wave excitation.
The results will be compared with measurements done by our
industrial partners.

Pratt & Whitney has developed an experimental capability for

' simulating traveling wave excitation in stationary rotors. Their

technique was applied to SN-1 in order to measure its first bend-
ing family’s response to a 3E excitation. We then predicted the
response of SN-1 with the methods developed here and in [1,4].

The issue is: do the 28 parameters (18 mistuned frequencies and
10 tuned system frequencies) identified by FMM ID from one set
of transfer functions determine the system properties sufficiently
well that we can accurately predict the traveling wave response?
To make the prediction, we use the mistuning and tuned system
frequencies from Advanced FMM ID as input to the FMM
reduced-order model. FMM calculates the system’s mistuned
modes and natural frequencies. Then, we use modal summation to
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Fig. 11 Comparison of FMM based forced response with ex-
perimental data, (a) FMM, (b) experiment

calculate the response to a 3E excitation. The modal damping used
in the summation was calculated from the half-power bandwidth
of the transfer function peaks.

Figure 11 shows the comparison of the benchmark forced re-
sponse results with that predicted by FMM. For clarity, only the
envelope of the blade response is shown. Also, the plots have been
normalized so that the maximum response is equal to one. In
general, the two curves agree reasonably well. In order to observe
how well the response of individual blades was predicted we have
also compared the relative responses of the blades at two resonant
peaks, the peaks labeled D and (@ in Fig. 11. The relative ampli-
tude of each blade as determined by both methods is plotted for
both resonant peaks in Fig. 12. The agreement is also reasonably
good. Thus, the FMM based method not only captured the overall
shape of the response, but also determined the relative amplitudes
of the blades at the various resonances.

5 Cause and Implications of Repeated Mistuning Pat-

tern

In the literature, the mxstumng in bladed disks is generally con-
sidered to be a random phenomenon. However, in Section 3 we
saw that both test rotors have very similar mistuning patterns that
are far from random. If such repeated mistuning matters are found
to be common among IBRs, it will have broad implications on the
predictability of these systems. In Section 5.1 we discuss the
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cause of the repeated mistuning. Then in Section 5.2, we examine
its implications on forced Tesponse predictability for a larger
sample.

5.1 Possible Cause of Repeated Mistuning. The similarity
between the mistuning patterns identified in 'SN-1 and SN-3 is
highly suggestive that the mistuning was caused by a consistent
manufacturing effect. In addition, we observed that the mistuning
in the torsion modes follows the same trends as in the bending
modes. Thus, the dominant form of mistuning is most likely
caused by relatively uniform blade-to-blade thickness variations.
One plausible explanation for the observed patterns is tool wear.
Suppose that the blades were machined in descending order from
blade 18 to blade 1. Then, due to tool wear, each subsequent blade
will be slightly larger than the previous ome. This effect would
cause the sector frequencies to monotonically increase around the
wheel. With the exception of the frequency jump observed at
blade 9, this behavior matches the observed mistuning. Since
there are 18 blades, the discontinuity at blade 9 could well be the
result of a tool adjustment made halfway through the machining
process.

5.2 TImplications of Repeated Mistuning. The repeating
mistuning patterns caused by such machining effects can signifi-
cantly increase our ability to accurately predict the response of the
fleet through probabilistic methods. For example, consider an en-
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tire fleet of the transonic compressors studied in this paper. If we
were to-incorrectly assume that the mistuning in these rotors was
completely random, then we would estimate that the sector fre-
quency deviation of each sector has a mean of zero and a standard

deviation of about 2%. Assuming these variations, we used FMM

to perform 10,000 Monte Carlo simulations to represent how a
fleet of engines would respond to a 3E excitation. We used the
data to compute the cumulative distribution function (CDF) of the
maximum blade amplitude on each compressor. The CDF of a
fleet of engines with random mistuning have a standard deviation
-of 2% is shown as the dashed line in Fig. 13. Notice that the
maximum amplitude varies widely across the fleet, ranging in
magnification from 1.1 to 2.5.

However, these rotors are in fact nominally mistuned with a
small random variation about the nominal pattern. Since the ran-
dom variation is much smaller than that considered above, the

fieet’s response is actually far more predictable. To illustrate this -

point, we approximated the nominal mistuning pattern as the
mean of the patterns measured for the two test rotors. Based on

‘this pattern, we found that the sector frequency deviations differed

from the nominal values with a standard deviation of onty 0.2%,
as shown in Fig. 14. Making use of the fact that the rotors are
nominally mistuned, we repeated the Monte Carlo simulations.

We then computed the. CDF of the maximum amplitude on each

rotor. The results are plotted as the solid line on Fig. 13. Notice
that by accountmg for nominal mistuning, the range of maximum
amplitudes is significantly reduced. Thus, if we can measure and
make use of nominal mistuning when it occurs then the fleet’s
behavior will be far more predictable.

6 Conclusions

A new method of identifying mistuning in bladed disks is dem-
onstrated using actual hardware. The method is called FMM ID
because it is based on the fundamental mistuning model (FMM),
[4]. To test the FMM ID approach, we used it to identify the
mistuning in a pair of modern transonic compressors and com-
pared the results with values that were determined by Pratt &
Whitney using a completely independent method.

FMM ID uses measurements of the system mode shapes and
natural frequencies to infer the rotor’s mistuning. The key concept
behind FMM ID is that the high sensitivity of system modes to
small variations in mistuning causes measurements of those
modes themselves to be an accurate basis for mistuning identifi-
cation. Since FMM ID does not require individual blade measure-
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ments, it is particularly suited to integrally bladed rotors. The
method is only applicable to isolated families of modes. We have
developed two forms of FMM ID: Basic FMM ID, and an ad-
vanced version that also identifies the frequencies of the tuned
system.

We applied both forms of FMM ID to the two test rotors. To
provide benchmark values of mistuning, our industrial partners in
this research, Pratt & Whitney, also identified the mistuning in the
rotors by measuring the geometry of each blade and then deter-
mining its natural frequencies through a finite element analysis.
The results from both methods of identifying mistuning agreed.
very well. In addition to identifying mistuning, the advanced form
of FMM ID can also infer the tuned system frequencies of the
rotor. Except for a slight shift in their mean value, the identified
tuned frequencies agreed well with finite eleient values. In prac-
tice, the ability of FMM ID to identify the tuned frequencies of
the system could provide a useful method of confirming that the
manufacturing process resulted in an IBR that is consistent with
the original design.

We observed that the nnstunmg patterns in the two test rotors
were very similar. This suggests that the mistuning was caused by
a repeating feature -of the manufacturing process, perhaps tool
wear. The cause of the repeating mistuning pattern will be the
subject of further investigation. If the mistuning in the two IBRs
that we have tested are, in fact, representative of the manufactur-
ing process, then a larger sample of rotors would exhibit similar
behavior, i.e., they would have significant levels of nominal mis-
tuning with small levels of random mistuning superimposed. In-
this case, the forced response of a fleet of these compressors
would be far more predictable than might have been previously
foreseen. If the manufacturing process can be understood and con-
trolled, then we may be able to use optimization techniques such
as those proposed in [5,6] to manufacture IBRs that have low,
robust response.

The FMM ID method provides a simple approach for accu-
rately identifying mistuning in integrally bladed rotors for isolated
families of modes. In fact, because of its simplicity one version of
the method requires only experimental data to determine the key
parameters that characterize its response. Once determined, the
mistuning can be used with the FMM reduced-order model, [4], to
predict how much the mistuning will increase the stage’s forced
response to a traveling wave, engine order excitation. This tech-
nology is useful since it will allow test engineers to determine
how the vibratory response of a specific IBR that is tested in a
spin pit, rig test or engine relates to the vibratory response of the
population as a whole. Ultimately, this technology should allow us
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" to reduce the number of tests reciuired to characterize the vibratory

response of components and still have more durable engines.

Acknowledgments

The authors would like to acknowledge that this research was
supported in part by the U.S: Air Force, contract number F33615-
01-C-2186, under the direction of Dr. Charles Cross and by the
GUIde Consortium.

The authors also would like to thank Mr. Robert J. Morris of
Pratt & Whitney Aircraft for providing the experimental and ana-
Iytical data on the two test compressors. We would also like to
acknowledge that the IBRs were provided by Prof. S. Fleeter from
Purdue University. ' -

Journal of Turbomachinery

References

[1] Feiner, D. M., and Griffin, J. H., 2004, “Mistuning Identification of Bladed
Disks Using a Fundamental Mistuning Model—Part I: Theory,” ASME J. Eng.
Gas Turbines Power, 126, pp. 150-158.

[2] Srinivasan; A. V., 1997, “Flutter and Resonant Vibration Characteristics of
Engine Blades,” ASME J. Eng. Gas Turbines Power, 119, pp. 742-775.

[3] Judge, J. A., Pierre, C., and Ceccio, S. L., 2002, “Mistuning Identification in
Bladed Disks,” Proceedings of the International Conference on Structural
Dynamics Modeling, Madeira Island, Portugal.

[4] Feiner, D. M., and Griffin, J. H., 2002, “A Fundamental Model of Mistuning
for a Single Family of Modes,” ASME J. Turbomach., 124, pp. 597-605.

[5] Jones, K. W., and Cross, C. 1., 2002, “Reducing Mistunéd Bladed Disk Forced
Response Below Tuned Resonant Amplitudes,” Proceedings of the 7th Na-
tional Turbine Engine High Cycle Fatigue Conference, Palm Beach Gardens,

FL. .
[6] Petrov, E., and Ewins, D., 2002, “Search for the Best Blade Arrangement in a

Mistuned Bladed Disc Assembly,” Proceedings of the 7th National Turbine
Engine High Cycle Fatigue Conference, Palm Beach Gardens, FL.

JANUARY 2004, Vol. 126 / 165




Proceedings of DETC'03

ASME 2003 Désign Engineering Technical Conferences and

Computers and Information in Engineering Conference

Chicago, Illinois USA, September 2-6, 2003

DETC2003/ViB-48448

SYSTEM IDENTIFICATION OF MISTUNED BLADED DISKS FROMTRAVELING
WAVE RESPONSE MEASUREMENTS

D.M. Feiner and J.H. Griffin
Department of Mechanical Engineering
Carnegie Mellon University

K.W. Jdnes and J.A. Kenyon
Air Force Research Laboratory
Propulsion Directorate

ABSTRACT '

A new approach to modal analysis is presented that allows
the modes and natural frequencies of a mistuned bladed disk to
be determined from its response to a traveling wave excitation.
The resulting modes and natural frequencies are then used as
input to a system identification method to determine the bladed
disk’s mistuning while it is rotating. This capability is useful
since it provides a basis for determining blade frequencies
under engine operational conditions and could help monitor the
health of the engine.

INTRODUCTION

Bladed disks used in turbine engines are nominally
designed to be cyclically symmetric. If this were the case, then
all blades would respond with the same amplitude when excited
by a traveling wave. However, in practice, the resonant
amplitudes of the blades are very sensitive to small chariges in
their properties. These variations are referred to as mistuning,
and may result from the manufacturing process or wear.
Mistuning causes some blades to have a significantly higher
vibratory response and may cause them to fail from high cycle
fatigue. Thus, mistuning is a primary source of uncertainty in a
bladed disk system’s response. Srinivasan provides a review of
this topic in [1].

Two types of tools have recently been developed to help
predict the response of mistuned systems [2-5]: reduced order
models (ROMs) and system identification methods. The ROMs
are very efficient methods for accurately predicting the forced
response of a bladed disk. They provide structural fidelity
comparable to a finite element analysis of a full mistuned

0. Mehmed and A.P. Kurkov
NASA Glenn Research Center
Structures and Acoustics Division

bladed disk with the numerical efficiency similar to that of a
simple mass spring model. Thus, they can be used as the basis
of Monte Carlo probabilistic analyses and optimization
programs. In addition, they reduce the number of parameters
that characterize mistuning to a manageable level and become
the basis of system identification methods.

System identification methods can determine the mistuning
of a specific bladed disk. Two methods have been reported in
the literature for determining mistuning from the vibratory
response of the coupled bladed disk system. The methods are
based on different ROMs of the mistuned system. The first is
derived from the reduced order model REDUCE [3] and the
second from FMM [5]. For the purpose of system
identification, the equations in the ROMs are reformulated so
that they can be used to solve the inverse problem, i.e. given the
mistuned modes and natural frequencies of the system
determine the amount of mistuning in each blade/disk sector.

The first method to use system modes to determine
mistuning was based on REDUCE. Since REDUCE was
derived using component mode synthesis, it requires a
significant amount of preliminary finite element analysis before
it can be used for system identification [6]. The second method
was based on the Fundamental Mistuning Mode} (FMM) and is
called FMM ID [7, 8]. The advantage of this method is that it is
much simpler and, as a result, the mistuning in the system can
be identified without any preliminary modeling of the system,
i.e. the method is completely experimental. Its disadvantage is
that it only works if the family of modes under consideration
has frequencies that are relatively isolated. In both methods of
system identification, the mistuned modes and natural
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frequencies of the bladed disk are used as imput data to
determine the mistuning in the system.

These recent system identification methods. overcome a
significant limitation of the traditional approach for determining
a bladed disk’s mistuning. Traditionally, mistuning in rotors
with attachable blades is measured by mounting each blade in a
broach block and measuring its natural frequency. The
difference of each blade’s frequency from the mean value is
then taken as a measure of its mistuning. However, this method
cannot be applied to integrally bladed rotors (IBRs) whose
blades cannot be removed for individual testing. In contrast,
the recent system identification techniques rely on
measurements of the bladed disk system as a whole, and are
thus well suited to IBRs.

These modern methods are also potentially valuable tools
for determining the mistuning in conventional bladed disks.
Even when applied to bladed disks with conventionally attached
blades, the traditional broach block method of mistuning
identification is limited. In particular, it does not take into
account the fact that the mistuning measured in the broach
block may be significantly different from the mistuning that
occurs when the blades are mounted on the disk. This variation
can arise because each blade’s frequency is dependent on the
contact conditions at the attachment. In the engine, the
attachment is loaded by centrifugal force from the blade which
provides a different contact condition than the clamping action
used in broach block tests. This difference is accentuated in
multi-tooth attachments since different teeth may come in
contact depending on how the attachment load is applied. In
addition, the contact in multi-tooth attachments may be
sensitive to manufacturing variations and, consequently, vary
from one location to the next on the disk. To address these
issues, a method of system identification is needed that can be
used to directly determine mistuning while thie stage is rotating.
The method will need to identify mistuning from the response
of the entire system since the blades are inherently coupled
under rotating conditions. This paper presents such a method.

The method presented in this paper provides an approach
for extracting the mistuned modes and natural frequencies of the
bladed disk under rotating conditions from its response to
naturally occurring, engine order excitations. The method is
not a new modal analysis method but rather a coordinate
transformation that makes traveling wave response data
compatible with the existing, proven modal analysis algorithms.
Once the modes and natural frequencies are known they can be
used as input to either method of system identification. This
paper will use FMM ID to demonstrate the process.

This paper is organized as follows. Section 2 presents the
theoretical basis of the mode extraction approach for use with
traveling wave excitations. Then in Section 3, we present two
experimental test cases that illustrate the method. In each case,
the extracted modes are used with FMM ID to determine the

rotor’s mistuning, which is then compared with benchmark
values. Finally, the results are summarized in Conclusions.

2. THEORY

Both of the mistuning identification methods cited require
the mistuned modes and natural frequencies of the bladed disk
as input. Under stationary conditions, they can be determined
by measuring the transfer functions of the system and using .
standard modal analysis procedures. One:way of measuring the
transfer functions is to excite a single point with a known
excitation and measure the frequency response of all of the
other points that define the system. However, when the bladed
disk is subjected to an engine order excitation all of the blades
are simultaneously excited and it is not clear how the resulting
vibratory response can be related to the. transfer functions
typically used for modal identification. It is shown here that if
the blade frequency response data is transformed in a particular
manner then the traveling wave excitation constitutes a point
excitation in the transform space and that standard modal
analysis techniques can then be used to extract the transformed
modes. Once the transformed modes are determined the
physical modes of the system can be calculated from an inverse
transformation.

Section 2.1 describes the traditional Single-Input-Single-
Output (SISO) modal analysis method and identifies its
limitations with respect to multi-point excitation data such as
the response to a traveling wave. In section 2.2 a general
coordinate transformation is presented that can be used to
express multi-point excitation response data in a form that is
compatible with traditional SISO modal analysis techniques.
Then in section 2.3 we describe how the coordinate "
transformation may be simplified for the case of traveling wave
response data.

2.1 Traditional Modal Analysis

Standard modal analysis techniques are based on
measurements of a structure’s frequency response functions
(FRFs).  These frequency response functions are  then
assembled as a frequency dependant matrix, H(w) , in which the
element H, (@) corresponds to the response of point i to the
excitation of point j [9]. Modal analysis methods require that
one row or column of this frequency response matrix be
measured. In the cases considered in this paper, the mistuned
modes correspond to a single isolated family of modes. For
example, the lower frequency modes such as first bending and
first torsion families often have frequencies that are relatively
isolated. When this is the case the “modes” of interest are
defined in terms of how the blade displacements vary from one
blade to the next around the wheel and can be characterized by
the response of one point per blade. Thus, the standard modal
analysis experiment may be performed in one of two ways when
measuring the mistuned modes of a bladed disk. First, the
structure’s frequency response may be measured at one point on
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each blade, while ‘t is excited at only one blade. This would
result in the measurement of a single column of H(w).
Alternatively, a row of H(®w) may be obtained by measuring
the structure’s response at only one blade and exciting the
system at each blade in turn. Notice that in either of these
acceptable test configurations, the structure is excited at only
one point at a time. However, in a traveling wave excitation, all
blades are excited simultaneously. Thus, the response of
systems subjected to such multi-point excitations cannot be
directly analyzed by standard SISO modal analysis methods.

2.2 General Multi-Point Excitation Analysis

Since a traveling wave excitation is not directly compatible
with standard SISO modal analysis methods, a different
approach that allows for multi-point excitations is needed. A
significant amount of research has been performed on the topic
of multiple-input data analysis. However, the work has tended
to focus on the case of random excitations, in which each
excitation point drives the structure with a different set of
randomly selected frequencies [10-12]. In contrast, a traveling
wave excites each measurement point with the same frequency
at any. given time. The method presented here is applicable to
any multi-input system, in which the frequency profile is
consistent from one excitation point to the next; however, the
amplitude and phase of the excitation sources are free to vary
spatially. Suitable excitation forms include traveling waves,
acoustic pressure fields, and even shakers when appropriately
driven.

In typical applications, the ij element of the frequency
response matrix H(@) corresponds to the response of point / to
the excitation of point j. However, in order to analyze
frequency response data from a multi-point excitation, we must
view H, (@) in a more general fashion. In a more general
sense, the i,j element describes the response of the i* coordinate
to an excitation at the j* coordinate.  Although these
coordinates are typically taken to be the displacement at an
individual measurement point, this need not be the case.

The structure’s excitation and response can instead be
transformed into a different coordinate system. For example, an
N degree-of-freedom coordinate system can be defined by a set
of N orthogonal basis vectors which span the space. In this
representation, each basis vector is a coordinate. The key to
performing modal analysis on multi-point excitation data is to
select a coordinate system in which the excitation is described
by just one basis vector. Thus, within this newly defined modal
analysis coordinate system, the structure is subjected to only a
single. coordinate excitation. Therefore, when our response
measurements are expressed in this same domain, they represent
a single column of the FRF matrix, and can be analyzed by
standard SISO modal analysis techniques. The following
section describes how this approach may be applied to traveling
wave excitations.

2.3 Traveiing Wave Modal Analysis

Consider an N-bladed disk subjected to a iraveling wave
excitation. It is assumed that the amplitude and phase of each
blade’s response is measured as a function of excitation
frequency. In practice, these measurements could be made
under rotating conditions with a Non-intrusive Stress
Measurement System (NSMS), whereas a laser vibrometer
could be used in a stationary bench test. For simplicity, we will
only consider one measurement point per blade.

It is assumed that the blades are excited harmonicly by the
force f(w)e'™, where the vector f describes the spatial
distribution of the excitation force. Similarly, the response of
each measurement point is given by h(@)e'™ . The components
of f and h are complex since they contain phase as well as
magnitude information. It is this excitation and response data
from which we wish to extract modes shapes and natural
frequencies. However, in order for this data to be compatible
with standard SISO modal analysis methods, it must first be
transformed to an appropriate modal analysis coordinate
system.

As indicated in Section 2.2, an appropriate coordinate
system that would allow this to occur is one in which the spatial
distribution of the force, f, is itself a basis vector. The spatial
distribution of a traveling wave excitation has the form:'

f; =F . @

e—i(N-i)(lN—')E

where E is the engine order of the excitation. Therefore, a
coordinate system whose basis vectors are the N possible values
of f, corresponding to all & distinct engine order excitations, 0
through N-1 may be used as a basis. The basis vectors are
complete and orthogonal.

The vectors f and h are transformed into this modal
analysis coordinate system by expressing them as a sum of the
basis vectors. Denoting our basis vectors as the set
{by,b,,...,b,_,} , this summation takes the form,

N-1

f=Y1b, (22)

N-1

h(w)=>) h(a),b,

m=0

(2b)

'Note, that in order to simplify the concepts, we have included only the
phase difference that occurs from one blade to the next. In the case of higher
frequency applications it would be necessary to also include the spatial
variation of the force over the airfoil if more than one family of modes interact.
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where the coefficients £, and h(w), describe the value of the
m® coordinate in the modal analysis domain. To identify the
values of these coefficients, we could use orthogonality; this is a
general approach that is applicable for any orthogonal
coordinate system. However, for the case of traveling wave
excitations, the coordinate transformation may be simplified.

Consider the »™ element of the vectors in (2). For
convenience, let all vector indices run from 0 to N-1. Thus,
these elements may be expressed as,

L. —l(u)mn
f;, =Z fme " (33)
m=0
& —~i(3E)mm
W), =3 h(w), e (3b)
m=0 .

where the exponential term is the n™ component of the basis
vector b . Observe that (3) is the inverse discrete Fourier
Transform (DFT") of f. This relation allows us to state the
transformation between physical coordinates and the modal
analysis domain in the simpler form,

f=DFT{f} (4a)
h=DFT" {k} (4b)
and conversely,
f =DFT{f} (52)
h =DFT{h} (5b)

where DFT is the discrete Fourier Transform of the vector.

By applying equation (5), the force and response vectors
are transformed to the modal analysis coordinate system. Due
to our selection of basis vectors, the resulting vector £ will
contain only one nonzero term that corresponds to the engine
order of the excitation, i.e. a 5E excitation will produce a
nonzero term in element 5 of f. This indicates that within the
modal analysis domain, we have excited only the £” coordinate.
Therefore, h(®) represents column E of the FRF matrix.

The transformed response data, h(w), may now be
analyzed using standard SISO modal analysis algorithms. The
resulting modes will also be in the modal analysis coordinate
system, and must be converted back to physical coordinates
though an inverse discrete Fourier Transform, (4). These
identified modes and natural frequencies may in turn be used as
inputs to FMM ID to determine the mistuning of a bladed disk
from its response to an engine order excitation.

There are two further details of this method that should be
noted. First, for the purpose of notation convenience we have

numbered the indices of all matrices and vectors from 0 to N-1.
However, most modal analysis packages use a numbering
convention that starts at 1. Therefore, an E” coordinate
excitation in our notation, corresponds to an (E+1)” coordinate
excitation in the standard convention. This must be taken into
account when specifying the “excitation point” in the modal
analysis software. Second, the coordinate transformation used
in this method is based on a set of complex basis vectors. Since
the modes are extracted in the modal analysis domain they will
be highly complex, even for lightly damped systems. Thus it is
necessary to use a modal analysis package that can properly
handle highly complex mode shapes. Not all commercial
algorithms are suitable. In our experience, we found that the
MODENT Suite by ICATS [13] works quite well for this

purpose.

The next section presents two experimental examples of the
method and shows how it can be used for system identification.

3. EXPERIMENTAL TEST CASES

This section presents two experimental test cases of the
traveling wave system identification technique. In the first
example, we excited an integrally bladed fan (IBR) with a
traveling wave while it- was in a stationary configuration.
Because the IBR was stationary, we were able to make very.
accurate response measurements using a laser vibrometer.
Thus, this example serves as a benchmark test of the traveling
wave identification theory. Then, in the second example we
explore the method’s effectiveness on a rotor that is excited in a
spin pit under rotating conditions. The amplitude and phase of
the response are measured using an NSMS system; NSMS is a
non-contacting measurement method which is commonly used
in the gas turbine industry for rotating tests. The purpose of this
example is to assess if NSMS technology is sufficiently
accurate that it can be used with our traveling wave system
identification technique to determine the IBR’s mistuning from
its engine order response.

3.1 Stationary Benchmark"
Consider the integrally bladed fan shown in Fig. 1. This

fan was tested using the traveling wave excitation system at
Wright Patterson Air Force Base’s Turbine Engine Fatigue
Facility [14]. Since the facility’s test system uses an array of
phased electromagnets to generate a traveling wave excitation,
the bladed disk remains stationary during the test. This
configuration is ideal for benchmark mistuning studies since it
allows us to use laser vibrometry to obtain very accurate
measurements of the rotor’s response.

This example serves two purposes. First, it validates the
traveling wave modal analysis method presented in this paper,
and second it demonstrates that the resulting modes and natural
frequencies may be used to determine the bladed disk’s
mistuning. The experiment was performed with the fan placed
on a rubber mat to approximate a free boundary condition.
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Figure 1: Fan tested for stationary benchmark

Figure 2: Masses used to mistune fan

First, we intentionally mistuned the IBR by fixing a
different mass to the leading edge tip of each blade with wax,
Fig. 2. The masses ranged between 0 and 7g, and were selected
randomly. Then, to obtain a benchmark measure of the
mistuned fan’s mode shapes, we performed a standard" SISO
modal analysis test. Specifically, we wused a single
electromagnet to excite blade 1 over the frequency range of the
first bending modes while we measured the response at all 16
blades with a Scanning Laser Doppler Vibrometer (SLDV).
The modes were then extracted from the measured FRFs using
the commercially available MODENT modal analysis package.
Figure 3 shows a portion of a representative FRF of this system.
Notice that the modes are very densely packed, however due to
extremely light damping we were able to extract all of the
modes within the desired frequency range.

Next, to validate the traveling wave modal analysis method
the fan was excited using a 5™ engine order traveling wave
excitation. Again, the response of each blade was measured

using the SLDV. The blade responses to the traveling wave
excitation were transformed using equation (5) and then
analyzed with MODENT to extract the transformed modes.
Since MODENT numbers its coordinates starting at 1 (0E), a

. 5E excitation corresponds to the excitation of coordinate 6.

Therefore, in the mode extraction process, we specified that the
excitation'was applied at the 6™ coordinate. Lastly, equation (4)
was used to transform the resulting modes back to physical
coordinates. .

-
o,
)
T

Response (mm/s/V)

360 365 370 375
Excitation Frequency (Hz)
Figure 3: Representative FRF

The modes measured through the traveling wave test were
then compared with those from our benchmark analysis. If this
system were tuned, its modes would be sine and cosine waves.
However, the presence of mistuning alters the mode shapes to
various extents. Some modes appear to be nearly pure
sinusoids, while others more heavily distorted. Figure 4 shows
several representative sets of mode shape comparisons that
range from nearly tuned-looking modes to modes that are very
localized. In all cases, the modes from the two methods agree
quite well. In addition, the natural frequencies were also
accurately identified, Fig. 5. Thus, the traveling wave modal
analysis method can accurately determine the modes and natural
frequencies of a bladed disk based on its response to a traveling
wave excitation,

Next, we will demonstrate that the resulting modes and
natural frequencies can be used with FMM ID to identify the
mistuning in the bladed disk. Since most of the mistuning in
this fan was caused by the attached masses, to a large extent
the mistuning is known. Therefore, we will use these mass
values as a benchmark with which to assess the accuracy of the
FMM ID results.

Since we wish to use the mass values as a benchmark, we
must isolate the mistuning caused by the masses from. the
inherent mistuning in the fan. Therefore, we first performed a
standard SISO modal analysis on the rotor with the masses
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removed, and used the resulting modal data as input to FMM
ID. This resulted in an assessment of the IBR’s inherent
mistuning, expressed as a percent change in each sector’s
frequency

Next, we performed an FMM ID analysis of the modes and
frequencies extracted from the traveling wave response of the
rotor with mass-mistuning. The resulting mistuning represents
the total effect of the masses and the IBR’s inherent mistuning.
To isolate the mass effect, we then subtracted the rotor’s
nominal mistuning.  Again, the resulting mistuning was
expressed as a percent change in each sector’s frequency.

In order to compare these mistuning values with the actual
masses placed on the blade tips, we must first translate each
sector frequency change into its corresponding mass. A
calibration curve to relate these two quantities was generated
through two independent methods. First, the calibration was
determined through a series of finite element analyses in which
we placed known mass elements on the tip of a blade, and used
the finite element model to directly calculate their effect on the
corresponding sector’s frequency.>  While this method is
sufficient in this case, there are often times when a finite
element model is not available. For such cases, a similar
calibration curve can be generated experimentally by varying
the mass on a single blade, and repeating the FMM ID analysis.
This experimental method was performed as an independent
check of .the calibration. Both approaches gave very similar
results, Fig. 6. For the range of masses used in this experiment,
we found that mass and sector frequency change are linearly
related. This calibration curve was then used to translate the

2 A single blade disk sector of the tuned bladed disk with cyclic
symmetric boundary conditions applied to the disk is used in this calculation.
Changing the phase in the cyclic symmetnc boundary condition only had a
slight effect on the results. The results given in Figure 5 are representative and
corresponded to a phase constraint of 90 degrees.
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identified sector frequency changes into their corresponding
masses.

Figure 7 shows the comparison between the mass mistuning
identified through FMM ID with the values of the actual masses
placed on each blade tip. The agreement is quite good. Thus,
by combining the traveling wave modal analysis method with
FMM ID, we can determine the mistuning in a bladed disk from
its traveling wave response

-8 (O Finite Element Calibration
o Experimental Calibration
—— Best-Fit Line

0 5 10 15
Mass (g)

Sector Frequency Deviation (%)

Figure 6: Calibration curve relating the effect of a unit
mass on a sector’s frequency deviation

10

O Traveling Wave ID
—— Input Mistuning

Mass Mistuning (g)

b

2 4 6 8 10 12 14 16
Blade Number

Figure 7: Comparison of the mistuning from the traveling
wave system identification method with benchmark value

3.2 Rotating Test Case
In the previous example, we verified the traveling wave

modal analysis method and showed that the resulting modes and
natural frequencies could be used to determine the bladed disk’s
mistuning. This was a useful benchmark experiment since the
rotor was excited while it was stationary, and thus we could

make very accurate measurements using a SLDV. However, if

" the method is to be applicable to conventional bladed disks, we

must be able to make response measurements under rotating
conditions. This second test case is intended to assess if the
measurement techniques commonly used in rotating tests are
sufficiently accurate to be used with FMM ID to determine the
mistuning in a bladed disk.

. For this example, we considered the fan shown in Fig. 8.
To obtain a benchmark measure of the rotor’s mistuning in its
first bending modes, we used an impact hammer and a laser
vibrometer to perform a SISO modal analysis test. The
resulting modes and natural frequencies were then used as input
to FMM ID to determine the fan’s mistuning,

Figure 8: Fan studied in rotation tests

Next, the fan was tested in the spin pit facility at NASA
Glenn Research Center. The system uses an array of permanent
magnets to generate-an eddy current excitation that drives the
blades. The blade response is then measured with an NSMS
system. For this test, the fan was driven with a 7E excitation,
over a rotational speed range of 1550 to 1850 RPM. The test
was performed twice, at two different acceleration rates. The
NSMS signals were then processed to obtain the amplitude and
phase of each blade as a function of its excitation frequency,
Fig. 9. The NSMS system measures the amplitude and phase of
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each blade once per revolution. Thus, the data taken at the
slower acceleration rate has a higher frequency resolution than
that obtained from the faster acceleration rate. In both cases,
the data is significantly noisier than the measurements
obtained in the previous example using an SLDV

Next, we applied the traveling wave system identification
method to extract the mode shapes from the response data.
First, we transformed the measurements to the modal analysis
domain by using (5), and extracted the mode shapes and
natural frequencies with MODENT. The extracted modes
were then transformed back to the physical domain through
equation (4). Finally, the resulting modes and frequencies
were used as input to FMM ID to identify the fan’s mistuning.
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Figure 10: Comparison of the mistuning determined through

the traveling wave system identification method with
benchmark values

The mistuning identified from the two spin pit tests was
then compared with the benchmark values, as shown in Fig.
10. In the case of the faster acceleration rate, we were able to
identify the trends of the mistuning pattern, but were not able
to accurately determine the mistuning values for ail blades,
Fig. 10(a). The key limitation in this analysis was our ability
to extract accurate mode shapes from data with such coarse
frequency resolution. However, the frequency resolution of
the data measured at a slower acceleration rate was 3 times
higher than the previous case. Thus, when FMM ID was
applied to this higher resolution data set, the agreement
between the traveling wave based ID and the benchmark
values was significantly improved, as shown in Fig. 10(b).
These results are very encouraging. They suggest that with
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adequate frequency resolution, NSMS measurements can be
used to determine the mistuning of a bladed disk under
rotating conditions.

4. CONCLUSIONS

A method for extracting a bladed disk’s mode shapes and
natural frequencies from its response to a traveling wave
excitation was presented. By using the resulting information
as input to the FMM ID system identification method, we were
in turn able to determine the mistuning in the bladed disk.
Thus, this approach allows us to perform system identification
of bladed disks from traveling wave response measurements.
Furthermore, it was demonstrated that the measurement
technology that is commonly used in rotating tests, NSMS,
may be used for this purpose.

There are a number of advantages to performing system
identification based on a bladed disk’s response to a traveling
wave excitation. First, it allows us to use data taken in a spin
pit or stage test to determine a rotor’s mistuning. In this way,
the mistuning we identify will include all effects present during
the test conditions, i.e. centrifugal stiffening, gas loading,
mounting conditions, as well as temperature effects. In
particular, it will allow us to assess the effect that centrifugal
loading of the attachments has on the mistuning in
conventional bladed disks. Thus, this technique extends the
applicability of FMM ID from IBRs to conventional bladed
disks.

In addition, the traveling wave system identification
method allows us to accurately assess the mistuning of some
bladed disks in a far more efficient manner. In order to
determine a rotor’s mistuning, FMM ID uses its mode shapes
and natural frequencies as input. Although FMM ID
theoretically only needs measurements of one or two modes,
the method’s robustness and accuracy is greatly improved
when more modes are included. For certain bladed disks, a
. single traveling wave excitation can be used to measure more
modes than would be possible from a single point excitation
test. For example, consider a highly mistuned rotor that has a
large number of localized modes. It is often hard to excite all
of these modes with only one single point excitation test,
because the excitation source will likely be at a node of many
of the modes. Therefore, if we wish to detect all of the mode
shapes, the test must be repeated at various excitation points.
However, if we were to drive the system with a traveling wave
excitation, we can generally excite all localized modes with
just a single engine order excitation. This difference arises
because the more localized a mode becomes in physical
coordinates, the more extended it will be in the modal analysis
coordinate system. Thus in highly mistuned systems, one
engine order excitation can often provide more modal
information than several single point excitations.

Finally, the traveling wave system identification method
presented in this paper could potentially form the basis of an
engine health monitoring system. If a blade develops a crack,
its frequency will decrease. Thus, by analyzing blade
vibration in the engine, the traveling wave system
identification method could detect a cracked blade. A health
monitoring system of this form would use sensors, such as
NSMS, to measure the blade vibration through an accel. The
measurements may be filtered to isolate an engine order
response, and then analyzed using the traveling wave system
identification method presented in this paper. This will result
in a measure of the rotor’s mistuning, which can be compared
with previous measurements to identify if any blade’s
frequency has changed significantly, thus identifying potential
cracks. The key obstacle in automating this procedure is to
develop a mode extraction method that does not require user
interaction. Although this may not be possible in general, it is
likely that one could develop an automated modal analysis
method which is tailored to a specific piece of hardware..
Thus, the traveling wave system identification method has the
potential to be an extremely useful tool for engine health
monitoring.

The focus of this paper is on extracting the modes of a
bladed disk from its response to a traveling wave excitation,
however, the general approach presented may be extended to
any structure subjected to a multi-point excitation in which the
driving frequencies are consistent from one excitation point to .
the next. A particular advantage to this approach is that it
allows structures to be tested in a manner that more accurately
simulates their actual operating conditions. Thus, this
transformation technique for multi-point excitation modal
analysis is not only a useful tool for bladed disk system
identification, but potentially can be used to address a much
larger class of systems. :
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A REDUCED ORDER MODEL FOR TRANSIENT ANALYSIS OF BLADED
DISK FORCED RESPONSE
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ABSTRACT

Various reduced order models have been developed to predict the forced response of a
bladed disk in an engine. Many of these prediction codes rely on steady state
calculations. However, the high acceleration rates used in gas turbine engines can
produce transient behavior in the vibratory response. Such transient effects can be
significant, and may lead to poor correlation of the predicted response with experimental
data. In addition, transient vibratory response may contribute significantly to fatigue
damage in the engine and may not be properly modeled using steady state calculations.

A new transient reduced order model of bladed disk vibration is developed. The method
is an extension of the Fundamental Mistuning M odel (FMM), and relies on numerical
evaluation of the differential equations of motion to capture the transient effects. The
model is verified experimentally.

The transient response is found to be far more sensitive to small errorsinthe n atural
frequencies of the mistuned system than are the steady state calculations. As a result,
small m odeling errors that produce negligible e ffects in a steady state prediction have
been shown to produce 20% amplitude errors in the transient solution. Thus, accurate
modeling is essential for an effective transient forced response prediction.

Since the transient FMM code is far more time consuming than the steady state.version,‘ it
is important to identify the acceleration regimes in which transient effects are significant,
and when they may be neglected. A series of analytical and numerical analyses were
performed to generate acceleration guidelines, which may be used to assess when a

transient analysis is required and when the simpler steady state analysis is sufficient.

1. INTRODUCTION




Bladed disks are generally designed to be cyclically symmetric with each blade
identical. However, due to imperfections in the manufacturing process as well as wear
during operation, there are slight variations from blade to blade. These small differences
have a large effect on the vibratory response of the disk, causing some blades to have
significantly larger amplitude than would be the case in the nominal system. This is
referred to as the mistuning problem, and has been studied extensively, as it contributes
to high cycle fatigue and the failure of blgded disks in service.' Srinivasan provides a
thorough review of this topic in [1].

There have been several reduced order models developed to efficiently predict the
behavior of mistuned bladed disks [2-5]. V

However, one thing all these models have in common are that they deal only with
the steady state response of rotors. When high acceleration rates are used in engines,
transient behavior is observed. An example of this type of behavior is shown in Figure 1,
which is data from a spin pit test of an IBR measured at NASA Glenn. In a test such as
this, the steady state response of the IBR does not reflect its actual behavior. In order to
correlate data such as this with prediétions, a model that accounts for transient behavior is

needed. The purpose of this research was to develop and validate such a transient model.

2. THEORY

The transient simulation code is based on the Fundamental Mistuning Model
(FMM), an existing steady-state reduced order model that is applicable to isolated
families of modes [5]. An extension of FMM, called FMM ID, is a completely
experimental method of determining the tuned system frequencies and mistuning for a
rotor [6,7]. |

When applying this method to a forced response calculation, FMM ID is first used
to determine the bladed disk’s mistuning and tuned system frequencies. These identified
parameters are used along with FMM to calculate the disk’s mistuned modes. A modal
summation is then used to calculate the forced response. _

When FMM is being applied to steady state response, ‘there is a closed form
solution for the response of each mode and the modes can be summed to determine the

response of the system. In the case of transient excitations the solution also can be




calculated by summing modes, but the modal response must be calculated numerically.
Consider the case when the blades are excited harmonically, but the frequency of the
excitation is a function of time. Then, if the modes are normalized so that they have a -

modal mass of one, the modal equations of motion have the form:
i+2lwa+0’a=f,e""" 6}
For purposes of discussion assume that the excitation frequency is a linear function of

time , i.e. w(f)=aw,+%t. When this expression is substituted into (1), a second order

time term appears in the exponential. As there is no closed form solution to this equation,

it must be solved numerically.

3. EXPERIMENTAL TEST CASES

This method was validated by comparing it with experiments on two separate
disks, one with a single blade, and one with 18 blades. Photographs of each disk are
shown in Figures 2 and 3.

For the single blade test case, the vibration was excited acoustically with a two
second sine sweep through the blade’s first bending resonance. A laser vibrometer was
used to measure and record the time history of the blade’s response. A plot of this time
history is shown in Figuré 4. Superimposed on this is a plot of the response envelope,
calculated by determining the magnitude of the response at each instant. For the
remainder of the plots in this paper, only this response envelope will be shown.

It may be noted from this figure that there is a beating phenomenon present in the
response. This occurs due to the interaction of the mode’s natural frequency and the
frequency of the excitation source. The transient portion of the solution to the equation
of motion always oscillates at the natural frequency, while the steady state portion of the
solution oscillates at the excitation frequency. Because these frequencies are close
togethef, a beating phenomenon is observed. When multiple modes are summed this type
of beating becomes very important in establishing the overall system response. Since the
beating depends on the spacing of the natural frequencies, it will be shown that the
transient response is sensitive to variations in the frequencies of the mistuned modes in

quite a different manner than is the steady state response.




~ In the first experiment, standard modal testing was used to measure the natural
frequency and damping of the blade’s first bending mode. This infdrmation was then
used as input into the transient simulation code to simulate the response. A éomparison
of the measured and simulated responses is shown in Figure 5. It was not p ossible to
directly measure the magnitude of the excitation force used in the experifnents.
Consequently, the value used in the simulation was chosen to minimize the error between
the measured and simulated results. Clearly, there is good agreement between the

experimental and analytical results for the single blade case.

In order to verify the prediction code for a more complex and realistic test
involving multiple modes, we used an eighteen bladed disk. For this test, we used a
magnetic excitation source applied to a single blade, and did a two second sine sweep
through the disk’s first bending mode resonant frequencies. Again, a laser vibrometer
was used to measure the response of each blade.

This rotor’s response was then simulated using the transient code. FMM ID was
used to determine the mistuning and tuned frequencies in the IBR and then FMM was
used to calculate the system’s mistuned modes and freciuencies. Each mode’s response
was calculated and summed to get the overall system response.

A comparison of the results from a representative blade is shown in Figure 6.
Again, the results match well, showing that the transient analysis correctly predicts the

response of systems with multiple modes.

4. TRANSIENT SOLUTION SENSITIVITY

A unique characteristic of transient behavior is the sensitivity of the blade
response to small variations in the natural frequencies of the mistuned system. To
demonstrate this effect, we changed three of the natural frequencies from the 18 blade
case in our numerical solution. Specifically, the frequencies of modes seven and nine
were increased by 0.25%, and mode 8 was decreased by 0.25%. The mode shapes and
damping were unchanged. The steady state frequency response of a representative blade
is shown in Figure 7, with the original and perturbed plots overlaid. Clearly, the change

in frequencies had a negligible effect on the steady state response. In addition, the




frequency changes had a relatively small effect on the transient responses of individual

modes, refer to Figure 8. However, consider the transient response of the blade shown in
| Figure 9. There are three lines on this plot, one from the experiment, one from the
original transient calculation, and one calculated with the perturbed natural frequencies.
To understand this, note from the modal responses that each mode peaks at
approximately one second after the excitation begins, i.e. the midpoint on the time scale.
Until that time the perturbed response follows the original simulation fairly well.
However, from one second on, the perturbed response looks markedly different. This is
shown in Figure 10, which expands the second half of Figure 9. The change is due to a
shift in the phase of the beating of the three perturbed modes caused by the small chanées
in the natural frequencies. Thus, when these modes are summed, the phase changes

produce a large change in the individual blade’s response.

5. ACCELERATION RATES THAT CAUSE LARGE TRANSIENT EFFECTS

| Transient behavior is important when the engine’s acceleration rate exceeds a
critical value. A dimensionless acceleration rate can be defined in terms of the natural
frequency of a mode.

=2 2)
a)'l

1

From our simulations we have found that transient effects become important if & > o,

where

@ =" (3)

and £ is the damping ratio for the mode. This value is comparable to the critical
acceleration rate used for frequency scans in modal testing [8,9]. A representative value
of a fast acceleration rate used in a military engine is 6,000 rpm in 4 seconds. If you
assume a natural frequency of 500 Hz. and a third engine order excitation, this works out

to a dimensionless acceleration rate o f around 5x107. A ssuming a damping ratio o f

0.2%, the critical acceleration rate would be approximately 1.33x 107°. Consequently,
the actual acceleration rates that occur in military engines are significantly larger than

that required to c ause significant transient e ffects. T herefore, transient effects willbe




important in the response. To illustrate this point, a numerical simulation of the 18

bladed disk was performed in which the damping was changed to 0.2% and the

dimensionless acceleration rate set to 6.3x107°, in order to match representative engine
conditions. T he response ofa representative mode is depicted in Figure 11. Clearly,

transient beating effects are very prominent in the response.

6. CbNCLUSIONS
The conclusions are that:
* A method of predicting the transient response of bladed disks was developed.
This method uses a numerical approach to integrate the modal equation of
motions. As input data, it uses the mistuned modes and natural frequencies
determined by FMM ID.
e The approach was shown to be accurate for both a simple single mode system
vand integrally bladed disk with eighteen blades.
e It was demonstrated that transient response is more sensitive to small errors in
the system’s natural frequencies than are the standard steady-state calculations.
This occurs because of interactions between multiple modes beating at slightly
different frequencies.
e Guidelines were developed to determine under what conditions transient

calculations are required.
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EXPERIMENTAL STUDY OF THE FUNDAMENTAL MISTUNING MODEL (FMM) FOR
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ABSTRACT

FMM is a reduced order model for efficiently calculating the forced response of a mistuned bladed disk.
FMM ID is a companion program which determines the mistuning in a particular rotor. Together, these
methods provide a way to acquire data on the mistuning in a population of bladed disks, and then simulate the
forced response of the fleet. This process is tested experimentally, and the simulated results are compared with
laboratory measurements of a “fleet” of test rotors. The method is shown to work quite well. It is found that
accuracy of the results depends on two factors: the quality of the statistical model used to characterize
mistuning, and how sensitive the system is to errors in the statistical modeling.

1. INTRODUCTION

Bladed disks are generally designed to be cyclically symmetric. However, in practice manufacturing
effects, non-uniform material properties, and wear cause each blade to be slightly different from the rest.
These blade-to-blade variations are known as mistuning. The resonant amplitudes of turbine blades are very
sensitive to these small variations in the blade properties. Therefore, mistuning can significantly amplify the
vibratory response of some blades, and cause them to fail from high cycle fatigue. Srinivasan provides a
thorough review of the topic [1].

One area of mistuning research has focused on the development reducéd order models to efficiently
predict the forced response of a mistuned bladed disk. A variety of reduced order models have been developed
by researchers at Carnegie Mellon University [2-3], the University of Michigain [4], and Imperial College [5].
Although these methods have been shown to agree extremely well with finite element simulations of a full
‘mistuned rotor, some have had difficulty predicting the response of actual hardware [6]. These results suggest
that the source of the error may lie in our inability to determine the correct input parameters to the ROMs.

Therefore, researchers subsequently developed methods to accurately measure the mistuning. in a bladed
disk. The first advanced mistuning identification method was created by Judge and Pierre [7]. Their technique
uses measurements of the bladed disk system as a whole to infer the mistuning of individual blades. More
recently, Kim and Griffin developed a similar technique which is applicable to veering regions and high
frequency modes [8]. However, the techniques of Judge and Kim require a finite element model of the system,
and significant analysis to identify the mistuning in an IBR. A much simpler approach is the FMM ID method
developed by Feiner and Griffin [9,10].

FMM ID is based on the Fundamental Mistuning Model (FMM), a simple reduced order model for
mistuned bladed disks [3]. Like the methods of Judge of Kim, FMM ID also uses measurements of the whole
assembly to infer blade frequencies, but it is completely e xperimental. FMM ID does not require a finite
element model. This makes FMM ID easier to use than the other methods. Furthermore, we have found that
in practice it is extremely difficult to obtain a finite element model that accurately reflects a component’s true




geometry and boundary conditions. Such inaccuracies may lead to errors when using the methods of Jﬁdge
and Kim. However, since FMM ID relies only on experimental data, it is not hindered by the quality of a finite
element model.

FMM ID can also experimentally determine the natural frequencies that a bladed disk would have if it
were tuned. The combination of tuned frequencies and mistuning provide enough information for FMM to
predict the forced response of a bladed disk based solely on experimentally measured data.

Both FMM and FMM ID have been verified experimentally in deterministic calculations [10]. However,
it has also been proposed that these methods may be used for probabilistic analysis. The idea is to use FMM
IDtoacquiredataon the mistuning and tuned s ystem frequencies in a p opulation ofbladed d isks. T hen,
perform Monte Carlo simulations with FMM to assess the response of the fleet. In this paper, we test this
process experimentally, and then compare the simulated results with measurements of a “fleet” of test rotors.

This paper is organized as follows. In Section 2, we summarize the FMM and FMM ID methods. Then,
Section 3 describes the benchmark experiments. In Section 4 we discuss the probabilistic analysis, and
compare our simulation results with experimental data. Finally, the key results are summarized in
Conclusions. ’

2. FMM AND FMM ID

2.1 FMM

FMM is a simple reduced order model of mistuned bladed disk vibration. The method is a simplification
of the Subset of Nominal Modes theory (SNM) developed by Yang and Griffin {2] and is designed for use in
low frequency modes such as first bending and first torsion. One of the advantages of this approach is that it
reduces the mistuning problem to it most basic elements. As a result, FMM requires a minimum number of
input parameters, and it’s extremely easy to use. This large simplification also makes FMM extremely
efficient. When performing Monte Carlo simulations of forced response, FMM can simulate the response of
about 200 disks per second on a 2 GHz PC.

* The FMM method only requires two sets of input parameters to calculate the effect of mistuning on the
mode shapes and frequencies of a bladed disk. Consider the eigenvalue problem solved by FMM to calculate
mistuned modes and frequencies,

(@*+A)B, =0}, (1)

Notice that the equation has only two input matrices, & and A . Q7 is a diagonal matrix of the tuned

system frequencies sqxiared. This term describes the nominal system. The matrix A characterizes the

mistuning. Ais composed of the blade frequency deviations, which are defined as the difference in each
blade’s frequency from the average value. Thus, FMM shows that the effect that mistuning has on a system is
completely defined by only two sets of parameters: the tuned system frequencies, and the blade frequency

deviations.




This result has a large implication to probabilistic analysis because it minimizes the number of random
variables which must be accounted for when calculating the response of mistuned systems. Since misturing
may be characterized by the frequencies of the blades, it is not necessary to separately model the variations in
blade geometry and material properties. All we need to account for is the net effect of these variations on the

blade frequencies.

Therefore, it is important to be able to accurately measure the frequencies of individual blades. Blade
frequencies are often difficult to measure directly, particularly in the case of IBRs, where the blades cannot be
removed for individual testing. But FMM provides a method for blade frequency identification: FMM ID.

2.2 FMM ID

Recall that the FMM eigenvalue problem, Eq. (1), is used to calculate the effect of mistuning on the mode
shapes and natural frequencies of a bladed disk. The equation takes as input, information on the nominal
system as well as the way it’s mistuned. With this data, the expression can be solved for the mode shapes and
natural frequencies of the mistuned bladed disk. However, we could alternatively solve the problem in reverse.
Suppose we measured the modes and natural frequencies of a mistuned rotor. We could then formulate an
inverse problem to Eq. (1) [9]. The solution to this inverse problem is the mistuning of each blade, as well as
the natural frequencies the system would have if it were tuned. This is the basis of FMM ID, and it is shown
schematically in Fig. 1. ’

In practice, the mistuned system modes and frequencies are measured through standard modal testing
techniques. This involves measuring a set of transfer functions, and then extracting modes with modal curve
fitting software. For the purpose of FMM ID, the modes only need to be measured at one point per blade.

FMM ID does not require any finite element data. Thus, it provides us with a way to determine all of the
key mistuning parameters experimentally.

2.3 Probabilistic Application of FMM and FMM ID

By measuring multiple bladed disks of the same design, FMM ID can collect data on mistuning and tuned
system frequencies, which can later be used for probabilistic analysis.

Once the data is collected, we can construct statistical models of the mistuning and tuned system
frequencies. Then, we can use those statistical models with FMM to perform Monte Carlo simulations of the
fleet.

The goals of this research are to apply this technique to an academic rotor, and compare our simulations
with experimental data. This will allow us to explore some of the challenges of probabilistic mistuning
analysis.

3. BENCHMARK EXPERIMENT

The experimental approach is to first generate benchmark data with which to compare our Monte Carlo
simulation results. This requires measuring the forced response of multiple bladed disks of the same design.




Next, we can apply the probabilistic procedure discussed in the previous section to simulate the response ofa
fleet of similarly constructed disks.

The first step in performing the benchmark experiment was to obtain a tuned bladed disk, which we could
later mistune in a controlled fashion. Figure 2 shows the academic IBR used for experiment. To tune the
structure, we first used FMM ID to measure the frequency of every blade. Since the blades on this disk have a
simple beam-like geometry, we were then able to use beam theory to calculate the appropriate length change
for every blade to compensate for its mistuning. Finally, we trimmed the blade lengths accordingly. Figure 3

- shows the frequency response function (FRF) of the rotor before and after tuning. Notice that prior to tuning,

the structure’s mistuning caused the repeated natural frequencies to split, producing additional peaks of the
FRF. After tuning, the splitting was eliminated in most of the modes. Thus, the disk was successfully tuned.

Then, the disk was mounted in the test fixture shown in Fig. 4. The disk was mistuned by adding masses
to the blade tips. The masses were selected to produce variations in the blade frequencies that were

‘approximately n ormally distributed with a standard deviation e qual to 2% o f the nominal blade frequency.

Note that a mean shift in the mistuning is mathematically equivalent to a mean shift in the tuned system
frequencies. Therefore, we defined the mean mistuning to be zero, and measured the cprresponding tuned
system frequencies through FMM ID.

We excited the disk with an array of electro-magnets positioned under the blade tips, Fig. 4. The magnets
produced an engine style excitation, while the disk remained stationary. The engine style excitation system at
Carnegie Mellon is similar to the one developed by Jones and Cross at the Air Force Research Laboratories
[11]. The bladed disk was excited over an appropriate frequency range to simulate the effect of an engine
order crossing with the first bending modes. The vibratory response of the blades was measured at each blade
tip by using a scanning laser vibrometer, Fig Sa. Laser vibrometers are ideal tools for mistuning measurements
since they are very accurate, non-contacting sensors which don’t alter the mistuning of the structure.

This measurement process was repeated with 10 different mistuning patterns, each drawn from the same
normal distribution. This effectively gave us measurements of 10 different disks from the same population.
On each test, we recorded the peak amplitude of every blade over the frequency range of interest, Fig 5b.
Since each disk has 24 blades, this produced a total of 240 peak amplitude measurements, which we will later
use for comparison with our simulation results. Furthermore, every “disk” was tested with four different
engine order excitations: 1E, 3E, 6E, and 9E. Thus, we will be able to assess the accuracy of the probabilistic
analysis method over a wide variety of excitation conditions. :

4. PROBABILISTIC ANALYSIS

Next, we followed the probabilistic analysis process outlined in Section 2.3. We proceeded as if we knew
nothing about the way the disks were mistuned.

4.1 Single Disk Model

We performed a modal analysis on one of the 10 test “disks.” Then, the measured modes were used in
FMM ID to determine the structure’s mistuning and tuned system frequencies, Fig 6. This represents the
crudest possible data for forming a statistical model of the bladed disk parameters. In practice, it is advisable




to identify the parameters of multiple bladed disks to form a reliable model of the random variables. However,
for the purpose of this study, we would like to assess the effect of a crude statistical model on the accuracy of
the subsequent Monte Carlo simulations. Therefore we formed an approximate statistical model based on this
limited set of data. With only one measure of the tuned system frequencies, we have no basis on which to
model variability. Therefore, the tuned frequencies were treated as fixed. The blade frequency deviations,
however, were modeled as a random variable. Figure 7 shows a normal plot of the 24 blade frecjuency
deviations from this disk. Notice that the data approximately falls on a straight line. This indicates that data is
roughly normal. Therefore, the mistuning was modeled as being normally distributed with a mean and
standard deviation given by the sample values of 0 and 1.52% respectively. However, it must me noted that
there is substantial uncertainty in these parameters. For instance, the 95% confidence interval on the standard
deviation covers a range from 1.18% to 2.13%. That’s nearly a factor of 2 uncertainty in the model parameter.

Based on this rough model, we performed Monte Carlo simulations of the bladed disk population using
FMM. These simulations were repeated for all four engine orders measured in the benchmark experiments. In
each case, we simulated the forced response of 1000 bladed disks. The results are shown in Fig. 8. Each plot
contains the CDF of all 240 peak blade amplitudes from the experiment, and a corresponding CDF constructed
from the simulation results. For clarity, the plots are shown on a normal probability scale. The agreement is
surprisingly good ¢ onsidering that the e xperimental C DFs only c ontain 240 data points, and are likely not
converged in the tails. Furthermore, the statistical model used in the simulations was inaccurate. This
Suggests that the response is relatively insensitive to errors in the statistical model. To better understand this

- behavior, we performed a sensitivity analysis.

4.2 Sensitivity Analysis

A small change in the standard deviation used in our statistical models will produce a shift in the simulated
CDF, Fig. 9. In general, the shift will not be uniform over the full range of the CDF, as shown in the figure.
Thus, one method for measuring sensitivity is to plot the change in the CDF due to a perturbation in the
standard deviation. This analysis was performed about a nominal standard deviation of 2%, and was repeated
for all four engine orders, Fig. 10. Notice that the 6 and 9E cases are nearly zero across the full range of
probability. Thus, this analysis suggests that this disk’s response to 6E and 9E excitations is very insensitive to
errors in the standard deviation. This is consistent with the CDFs of Fig. 8. In particular, consider the 9E
CDF. Notice that despite a large error in the statistical model used to generate the simulated curve, it agrees
extremely well with the experimental data from about 10% to 90% cumulative probability. The discrepancy
seen in the tails is most likely a result of insufficient experimental data to produce a converged experimental
CDF in those regions.

Next, consider the 1E case. The sensitivity plot indicates that the system’s response to a 1E excitation is
relatively sensitive to errors in the statistical model for most of the probability range. However, in the vicinity
of 85% cumulative probability, the 1E line passes through zero on the sensitivity plot, and is therefore much
less sensitive. Again, this is consistent with the CDF plot for this case, which shows good agreement between
the simulation and experiment around 85%, yet larger discrepancies away from that area. This suggests that
much of the error seen in the low engine order simulations is due to a poor statistical model. Therefore, the
correlation should be improved if we use a higher quality model for the variation in mistuning.




4.3 Ten Disk Model

Next we formed a much better statistical model of the mistuning by using FMM ID to measure the blade
frequency deviation in all 10 test disks. Again, the data was found to be normally distributed. In this case, the
sample standard deviation was 1.92%, which is much closer to the true standard deviation of 2%. Since this
sample standard deviation is based off of 10 times as much data as the crude model, our uncertainty in the
parameter has been greatly reduced. The 95% confidence interval ranges from 1.77% to 2.12%.

The Monte Carlo simulations were then repeated with this improved statistical model. The resulting CDFs
are shown in Fig. 11. As expected, we see substantial improvement in the correlation of the 1E and 3E
simulations w ith experimental data. Furthermore, simulated C DFs from the 6 E and 9 cases are v irtually
identical to those generated from a much cruder statistical model. This result confirms that the 6 and 9E cases
are insensitive to statistical modeling errors. Again, the simulations agrée well with the experimental
benchmark. Therefore, the FMM based probabilistic analysis process may be used to accurately determine the
statistical behavior of the fleet.

4.4 Sensitivity Dependence on Mistuning Level

We found throughout Section 4 that the accuracy of a probabilistic mistuning analysis depends on two
factors: the quality of the statistical model, and s ensitivity o f the sy stem’s response to statistical modeling
errors. As shown in Fig. 10, the system’s sensitivity is a function of the engine order of excitation as well as
the probability range of interest. However, it should be noted that the sensitivity regime is also governed by
the level of mistuning in the system.

Consider the CDFs shown in Fig. 12. Each curve corresponds to the response of a system with a different
mistuning standard deviation, o, and o respectively. In the case of o, the 99™ percentile amplitude is about
1.5. Yet, the 99" percentile amplitude for o, is slightly higher. Therefore, we can plot the 99™ percentile of
the response as a function of the standard deviation of the mistuning, Fig 13. Figure 13 shows the 99"
percentile for all four engine orders considered in this study. Notice that in the vicinity of 2% mistuning, the
6E and 9E curves have a near-zero slope. Thus, the 99™ percentile amplitude in these cases is insensitive to
small changes in the mistuning level (standard deviation). This is consistent with the sensitivity plot shown in
Fig. 10. However, if the mistuning was instead on the order of 0.5%, then Fig. 13 indicates that the response
to a 6E or 9E excitation would be much more sensitive to changes in the standard deviation. Thus, a system’s
sensitivity to errors in the statistical modeling depends on the level of rhistuning.

5. CONCLUSIONS

It was shown that FMM and FMM ID may be used for probabilistic analysis of mistuned bladed disks. The
process involves using FMM ID to collect data on the mistuning and tuned frequencies of a population of
bladed disks. This data is then used to construct statistical models of the parameters. Finally, we can use those
statistical models with FMM to perform Monte Carlo simulations of the fleet response. FMM is an ideal
physical model for Monte Carlo simulations because it is accurate, simple to use, and extremely efficient.

The method was verified experimentally by comparing the results of our Monte Carlo simulations against
laboratory measurements of mistuned disks. The FMM approach worked very well. We found that the




accuracy of the method depends on both the quality of the statistical model, and the sensitivity of the system’s
response to errors in the statistical modeling. The sensitivity regime may be assessed through the sensitivity
analyses discussed in Sections 4.2 and 4.4. The efficiency of FMM makes these analyses fast and easy to
perform. Ifitis found that the system is sensitive, then the statistical models may need to be improved to
ensure an accurate simulation. Such improvements can be made by using FMM ID to measure the mistuning
of additional hardware. Conversely, additional testing may not be neceséar_y on systems that are insensitive to

modeling errors.

FMM and FMM ID were experimentally shown to be effective tools for probabilistic analysis of mistuned
bladed disks.

ACKNOWLEDGEMENTS

The authors would like to acknowledge that this research was supported by NASA Glenn Research Center,
grant number NCC3 - 1058, under the direction of Dr. Shantaram Pai. The POLYTEC scanning vibrometer
used in the eXperiments was purchased through a DURIP grant sponsored by an AFOSR. The traveling wave
excitation system was developed with support from the U.S. Air Force, contract number F33615-01-C-2186,
and from the GUIde Consortium. '

REFERENCES

(1] Srinivasan, A. V., 1997, “Flutter and Resonant Vibration Characteristics of Engine Blades,” Journal of
Engineering for Gas Turbines and Power, 119, 4, pp. 742-775. .
21 Yang, M.-T., and Griffin, J. H., 2001, “A Reduced Order Model of Mistuning Using a Subset of Nominal
Modes,” Journal of Engineering for Gas Turbines and Power, 123(4), pp. 893-900.

[3] Feiner, D.M., and Griffin, J. H., 2002, “A Fundamental Mode! of Mistuning for a Single Family of Modes,”
Journal of Turbomachinery, 124(4), pp. 597-605.

(4] Castanier, M. P., Ottarsson, G., and Pierre, C., 1997, “A Reduced Order Modeling Technique for Mistuned
Bladed Disks,” Journal of Vibration and Acoustics, 119(3), pp. 439-447.

[5] Petrov, E., Sanliturk, K., Ewins, D., and Elliott, R., 2000, “Quantitative Prediction of the Effects of
Mistuning Arrangement on Resonant Response of a Practical Turbine Bladed Disk,” 5th National Turbine Engine
High Cycle Fatigue Conference, Chandler, Arizona.

[6] Seinturier, E., Lombard, J.P., Berthillier, M., and Sgarzi, O., 2002, “Turbine Mistuned Forced Response
Prediction: Comparison With Experimental Results,” ASME Paper 2002-GT-30424, International Gas Turbine
Institute Turbo Expo, Amsterdam, The Netherlands.

[71 Judge, J.A., Pierre, C., and Ceccio, S.L., 2002, “Mistuning Identification in Bladed Disks,” Proceedings of
the International Conference on Structural Dynamics Modeling, Madeira Island, Portugal.

(8] Kim, N.E., Griffin, J.H., 2003, “System ID in High Modal Density Regions of Bladed Disks,” 8" National
Turbine Engine High Cycle Fatigue Conference, Monterey, California.

[9] Feiner, D.M,, and Griffin, J.H., 2003, “Mistuning Identification of Bladed Disks Using a Fundamental
Mistuning Model -- Part I: Theory,” Journal of Turbomachinery, 126(1).

[10] Feiner, D.M., and Griffin, J.H., 2003, “Mistuning Identification of Bladed Disks Using a Fundamental
Mistuning Model - Part II: Application,” Journal of Turbomachinery, 126(1).

[11] Jones, K.W., and Cross, C.J., 2003, “Traveling Wave Excitation System for Bladed Disks,” Journal of
Propulsion and Power, 19(1), pp. 135-141.




FIGURES

Figure 1: Schematic representation of the relation F lgure 2: Test IBR.

between FMM and FMM ID.
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Figure 3: FRF’s of the test IBR before and after tuning.
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Figure 5: Representative measurements of one disk configuration, driven by a 1E excitation.
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